Disorders Of Intracellular Cobalamin Metabolism

Watchlist
Retrieved
2021-01-18
Source
Trials
Genes
Drugs

Summary

Clinical characteristics.

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range:

  • In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction
  • Newborns, who can have microcephaly, poor feeding, and encephalopathy
  • Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS)
  • Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures
  • Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic compications, and/or subacute combined degeneration of the spinal cord

Diagnosis/testing.

The diagnosis of a disorder of intracellular cobalamin metabolism in a symptomatic individual is based on clinical, biochemical, and molecular genetic data. Evaluation of the methylmalonic acid (MMA) level in urine and blood and plasma total homocysteine (tHcy) level are the mainstays of biochemical testing. Diagnosis is confirmed by identification of biallelic pathogenic variants in one of the following genes (associated complementation groups indicated in parentheses): MMACHC (cblC), MMADHC (cblD-combined and cblD-homocystinuria), MTRR (cblE), LMBRD1 (cblF), MTR (cblG), ABCD4 (cblJ), THAP11(cblX-like), ZNF143(cblX-like), or a hemizygous variant in HCFC1 (cblX, which can show a cblC complementation class).

Management.

Treatment of manifestations: Critically ill individuals must be stabilized, preferably in consultation with a metabolic specialist, by treating acidosis, reversing catabolism, and initiating parenteral hydroxocobalamin. Treatment of thromboembolic complications (e.g., HUS and thrombotic microangiopathy) includes initiation of hydroxocobalamin (OHCbl) and betaine or an increase in their doses. Long-term management focuses on improving the metabolic derangement by lowering plasma tHcy and MMA concentrations and maintaining plasma methionine concentrations within the normal range. Gastrostomy tube placement for feeding may be required; infantile spasms, seizures, congenital heart malformations, and hydrocephalus are treated using standard protocols.

Prevention of primary manifestations: Early institution of injectable hydroxocobalamin improves survival and may reduce but not completely prevent primary manifestations. To prevent metabolic decompensations, patients are advised to avoid situations that result in catabolism, such as prolonged fasting and dehydration, and always remain on a weight-appropriate dose of hydroxocobalamin.

Surveillance: During the first year of life, infants may need to be evaluated once or twice a month by a metabolic specialist to assess growth, nutritional status, feeding ability, and developmental and neurocognitive progress. Toddlers and school-age children should be evaluated at least twice a year to adjust medication dosing (hydroxocobalamin, betaine) during growth and evaluate nutritional status. Teens and adults may be seen on a yearly basis. Routine ophthalmologic, neurologic, and cardiac evaluations may also be appropriate.

Agents/circumstances to avoid: Prolonged fasting (longer than overnight without dextrose-containing intravenous fluids); dietary protein intake below the recommended dietary allowance for age or more than that prescribed by a metabolic specialist; methionine restriction including use of medical foods that do not contain methionine; and the anesthetic nitrous oxide.

Evaluation of relatives at risk: If the pathogenic variants in the family are known, at-risk sibs may be tested prenatally to allow initiation of treatment in utero or as soon as possible after birth.

If the newborn sib of an affected individual has not undergone prenatal testing, molecular genetic testing can be performed in the first week of life if the pathogenic variants in the family are known. Otherwise, evaluation of urine organic acids and plasma amino acids, measurement of total plasma homocysteine, serum methylmalonic acid analysis, and acylcarnitine profile analysis can be used for the purpose of early diagnosis and treatment.

Genetic counseling.

The majority of disorders of intracellular cobalamin metabolism are inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. The disorder of intracellular cobalamin metabolism caused by pathogenic variants in HCFC1 is inherited in an X-linked manner. The risk to sibs depends on the genetic status of the mother. If the mother of the proband has an HCFC1 pathogenic variant, the chance of transmitting it in each pregnancy is 50%. Males who inherit the pathogenic variant will be affected. Females who inherit the pathogenic variant will be heterozygous and will usually not be affected (no affected females have been described to date).

Once the pathogenic variant(s) have been identified in an affected family member, carrier testing for at-risk relatives, molecular genetic prenatal testing for a pregnancy at increased risk, and preimplantation genetic diagnosis are possible.

Diagnosis

The disorders of intracellular cobalamin metabolism result from deficient synthesis of the coenzymes derived from vitamin B12:

  • Adenosylcobalamin (AdoCbl) – the coenzyme for methylmalonyl-CoA mutase enzyme
  • Methylcobalamin (MeCbl) – the coenzyme for the enzyme methionine synthase (MTR) (Figure 1)
Figure 1. . Intracellular metabolism of cobalamin.

Figure 1.

Intracellular metabolism of cobalamin. The intracellular cobalamin metabolism and related pathways – including the complementation groups and corresponding genes – are shown. Endocytosis of cobalamin bound to its blood carrier transcobalamin (more...)

This GeneReview describes inborn errors of cobalamin metabolism, including disorders with combined methylmalonic acidemia and homocystinuria caused by AdoCbl and MeCbl deficiency (Table 1 – B) as well as disorders associated with homocystinuria (MeCbl deficiency) (Table 1 - C). For disorders associated with isolated methylmalonic acidemia (AdoCbl deficiency) (Table 1 – A) see Isolated Methylmalonic Acidemia).

Note: All the disorders of intracellular cobalamin metabolism are inherited in an autosomal recessive manner except for cblX (associated with pathogenic variants in HCFC1), which is inherited in an X-linked manner.

Table 1.

Disorders of Intracellular Cobalamin Metabolism by Biochemical Phenotype

Biochemical PhenotypeComplementation Group 1Gene
A. Methylmalonic acidemia (AdoCbl deficiency) 2cblAMMAA
cblBMMAB
cblD-methylmalonic aciduriaMMADHC 3
B. Combined methylmalonic acidemia and homocystinuria 4 (AdoCbl and MeCbl deficiency)cblC 5MMACHC 6
PRDX1 7
HCFC1 8 (cblX)
THAP11 7
ZNF143 9
cblD-combinedMMADHC 3
cblFLMBRD1
cblJABCD4 10
C. Homocystinuria 4 (MeCbl deficiency)cblD-homocystinuriaMMADHC 3
cblEMTRR
cblGMTR

Note: The terms methylmalonic acidemia and methylmalonic aciduria are synonymous, as are the terms hyperhomocysteinemia and homocystinuria.

1.

The nomenclature for inherited disorders of intracellular cobalamin metabolism is based on cellular complementation analysis that defines cobalamin groups A-J (cblA - cblJ). The name of each disorder is prefixed with "cbl" (for cobalamin) followed by a unique capital letter for its complementation group determined by somatic cell analysis (e.g., cblC represents complementation group C).

2.

cblA, cblB, and cblD-methylmalonic aciduria are discussed in detail in Isolated Methylmalonic Acidemia and briefly under Differential Diagnosis.

3.

Coelho et al [2008]

4.

The homocystinuria seen in disorders of intracellular cobalamin metabolism is associated with low/normal methionine in contrast to the homocystinuria seen in cystathionine beta-synthase deficiency, which is associated with high methionine (see Figure 1).

5.

Individuals with cblX can show a cblC complementation class.

6.

A rare complex variant of MMACHC and adjacent gene PRDX1 has been described [Guéant et al 2018]; see Molecular Genetics.

7.

Quintana et al [2017]

8.

Yu et al [2013]

9.

Pupavac et al [2016]

10.

Coelho et al [2012]

The diagnosis of a disorder of intracellular cobalamin metabolism in a symptomatic individual is based on clinical, biochemical, and molecular genetic data. With the availability of molecular genetic testing, complementation group analysis is no longer frequently used.

Suggestive Findings

A disorder of intracellular cobalamin metabolism should be suspected in individuals with the following physical and laboratory findings.

Physical findings

  • In utero. Nonimmune hydrops, cardiomyopathy, intrauterine growth restriction
  • Newborns. Microcephaly, poor feeding, encephalopathy
  • Infants. Poor feeding and slow growth, hypotonia, developmental delay, seizures including infantile spasms, infantile maculopathy. Rarely, hemolytic uremic syndrome and obtundation.
  • Toddlers. Poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, hypotonia, seizures
  • Adolescents and adults. Neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, subacute combined degeneration of the spinal cord

Laboratory findings

  • Macrocytic anemia with normal B12 levels, thrombocytopenia, and/or neutropenia
  • Hyperammonemia and/or metabolic acidosis in infancy (rare)

Newborn with abnormal newborn screening based on elevated C3 propionylcarnitine or decreased methionine (see ACMG ACT Sheetsfor C3 and methionine)

  • Detection by newborn screening (NBS) depends on the C3 and C3/C2 ratio cutoff values used by reference laboratories and the availability of detection of low methionine [Chace et al 2001, Weisfeld-Adams et al 2010, Huemer et al 2015b]. cblD-homocystinuria, cblE, and cblG do not have elevated C3 and are often not identified on newborn screening. In some US states, detection of low methionine and the use of an NBS tool (clir.mayo.edu; registration required) in combination with measurement of homocysteine has sucessfully identified individuals with cblE and cblG [Wong et al 2016].
  • Since NBS potentially allows early detection of certain disorders of intracellular cobalamin metabolism, some affected individuals may be diagnosed before the onset of symptoms.

Establishing the Diagnosis

The diagnosis of a disorder of intracellular cobalamin metabolism is established in a proband with specific biochemical testing results (see Biochemical Testing and Table 2) and confirmed by identification of biallelic pathogenic variants in one of the genes listed in Table 3 – with the exception of HCFC1, in which a hemizygous pathogenic variant is confirmatory. For equivocal molecular genetic testing results, enzymatic testing on skin fibroblasts can be used.

Biochemical Testing

The identification of disorders of intracellular cobalamin metabolism relies on the following testing (Table 2):

  • Urine organic acid (UOA) analysis to screen for elevation of methylmalonic acid (MMA). Other secondary metabolites such as 3-hydroxypropionate, methylcitrate, and tiglylglycine may be seen transiently in symptomatic affected individuals.
  • Serum methylmalonic acid analysis is more quantitative than urine organic acid analysis.
  • Total plasma homocysteine (tHcy) analysis is the preferred method of detecting plasma homocysteine.
    Note: Delays in separating serum from plasma after obtaining a blood sample can artificially increase total homocysteine by as much as 10% an hour [Ubbink 2000, Refsum et al 2004].
  • Plasma amino acid (PAA) analysis. Hypomethioninemia, seen in disorders with defective MeCbl synthesis, helps differentiate disorders of intracellular cobalamin metabolism from other causes of homocystinuria, such as cystathionine beta-synthase deficiency, in which methionine level is elevated (see Differential Diagnosis, Cystathionine beta-synthase deficiency).
    Other findings that can be seen on PAA analysis:
    • Hyperhomocysteinemia and mixed disulfides (which are also excreted in the urine)
    • Cystathionine (which is also excreted in the urine) in individuals with cblC
  • Serum vitamin B12 levels to exclude vitamin B12 deficiency
    Note: cblF and cblJ disorders are the exceptions and have been reported to have low B12 levels at diagnosis.
  • Plasma acylcarnitine analysis to detect elevation of propionylcarnitine (C3) or confirm the elevated propionylcarnitine following newborn screening

Table 2.

Metabolite Concentrations in Disorders of Intracellular Cobalamin Metabolism

Methylmalonic AcidPlasma Total Homocysteine (tHcy)Plasma Methionine
UrineBlood
Biochemical PhenotypeComplementation GroupNormal Values
<4 mmol/mol/Cr 1<0.27 µmol/L 13-13 µmol/L11-37 µmol/L
Values by Biochemical Phenotype
Combined AdoCbl & MeCbl deficiencycblC 1100s to low 1,000s of mmol/mol Cr when ill or at presentation; generally ranging from 10s to 100s mmol/mol Cr during treatment100s of µmol/L at presentation and when ill; 1-10 µmol/L when well & treated 2>100 when ill; 20-80 µmol/L when well & treated 2Low to normal
cblD-combined 3Can be >1,000 mmol/mol CrNR>100 µmol/L in some casesLow to normal
cblF 4200 mmol/mol/Cr when untreated; normal during treatmentNormal when treatedIncreased when untreated; normal when treatedNormal
cblJ 5IncreasedIncreasedIncreasedLow to normal
cblX 6, 7, 8IncreasedIncreasedNormal to increasedLow to normal
MeCbl deficiencycblD-homocystinuria 3NormalNormal>100 µmol/L in some casesLow to normal
cblENormal 9Normal>100 µmol/L when illLow 10
cblGNormalNormalIncreasedLow 10

NR = not reported

1.

Standard values have not been exclusively derived from children or neonates. Some laboratories report urine methylmalonic acid (MMA) concentrations in mg/g/Cr (normal: <3 mg/g/Cr) and serum concentrations in nmol/L (normal: <271 nmol/L). The molecular weight of MMA is 118 g/mol.

2.

Authors' experience with >50 affected individuals

3.

Values refer to cblD-combined and cblD-homocystinuria.

4.

Alfadhel et al [2011]

5.

Kim et al [2012]

6.

Yu et al [2013]

7.

Pupavac et al [2016]

8.

Quintana et al [2017]

9.

Mild elevation uncommon [Tuchman et al 1988]

10.

Watkins & Rosenblatt [2014]

Molecular Genetic Testing

Molecular genetic testing approaches can include a combination of gene-targeted testing (concurrent or serial single-gene testing, multigene panel) and comprehensive genomic testing (exome sequencing, exome array, genome sequencing) depending on the phenotype.

Individuals with the distinctive laboratory findings of a specific disorder of intracellular cobalamin metabolism described in Suggestive Findings are likely to be diagnosed using gene-targeted testing (see Option 1), whereas symptomatic individuals with nonspecific supportive clinical and laboratory findings in whom the diagnosis of a disorder of intracellular cobalamin metabolism has not been considered are more likely to be diagnosed using comprehensive genomic testing (see Option 2).

Option 1

When the phenotypic and laboratory findings suggest the diagnosis of a disorder of intracellular cobalamin metabolism, molecular genetic testing approaches can include single-gene testing or use of a multigene panel.

  • Single-gene testing. Sequence analysis detects small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. Perform sequence analysis of MMACHC first in individuals with biochemical findings of combined AdoCbl and MeCbl deficiency as it is by far the most commonly associated gene (Figure 2). If only one pathogenic variant is found perform gene-targeted deletion/duplication analysis to detect intragenic deletions or duplications. If single-gene testing is nondiagnostic, a multigene panel is the next step.
  • A multigene panel for inherited disorders of intracellular cobalamin metabolism that includes the genes listed in Table 3 and other genes of interest (see Differential Diagnosis) is most likely to identify the genetic cause of the condition at the most reasonable cost while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this GeneReview. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.
    For this disorder a multigene panel that also includes deletion/duplication analysis can be considered if sequence analysis has not identified two pathogenic variants in an individual with strong biochemical evidence for a disorder of intracellular cobalamin metabolism.
    For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic tests can be found here.
Figure 2.

Figure 2.

Testing algorithm to confirm the diagnosis of a disorder of intracellular cobalamin metabolism in a proband 1. While diagnostic testing is being performed, contact genetics/metabolic team and initiate treatment immediately.

Option 2

When the phenotype is indistinguishable from many other inherited disorders characterized by the wide of array of possible nonspecific clinical findings or an individual has atypical phenotypic features of a disorder of intracellular cobalamin metabolism, comprehensive genomic testing (which does not require the clinician to determine which gene[s] are likely involved) is the best option. Exome sequencing is most commonly used; genome sequencing is also possible.

For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.

Table 3.

Molecular Genetic Testing Used in Disorders of Intracellular Cobalamin Metabolism

Gene 1Complementation Group / DisorderProportion of Disorders of Intracellular Cobalamin Metabolism Attributed to Pathogenic Variants in This GeneProportion of Pathogenic Variants 2 Detected by Test Method
Sequence analysis 3Gene-targeted deletion/duplication analysis 4
MMACHCcblC80%96%-98% 5, 6, 7Unknown 8, 9
MMADHCcblD-combined; cblD-homocystinuria<5%22/22 10Unknown 8
MTRRcblE<5%21/22 11Unknown 8
LMBRD1cblF<5%23/24 12One reported 13
MTRcblG<5%64/74 11Unknown 8
ABCD4cblJ<<1%12/12 14Unknown 8
HCFC1cblX<1%14/17 15, 16Unknown 8
THAP11Not yet defined-cblX-like<1%Single case report 17Unknown 8
ZNF143Not yet defined-cblX-like<1%Single case report 18Unknown 8

Genes are listed in order of complementation group number.

1.

See Table A. Genes and Databases for chromosome locus and protein.

2.

See Molecular Genetics for information on allelic variants detected in this gene.

3.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Pathogenic variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

4.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include: quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

5.

Liu et al [2010]

6.

Lerner-Ellis et al [2009]

7.

A rare complex variant of MMACHC and adjacent genes has been described [Guéant et al 2018].

8.

No data on detection rate of gene-targeted deletion/duplication analysis are available.

9.

One consanguineous individual has been found to have biallelic MMACHC whole-gene deletions [Author, unpublished observation].

10.

Stucki et al [2012]