Branchiootorenal Spectrum Disorder

Watchlist
Retrieved
2021-01-18
Source
Trials
Genes
Drugs

Summary

Clinical characteristics.

Branchiootorenal spectrum disorder (BORSD) is characterized by malformations of the outer, middle, and inner ear associated with conductive, sensorineural, or mixed hearing impairment, branchial fistulae and cysts, and renal malformations ranging from mild renal hypoplasia to bilateral renal agenesis. Some individuals progress to end-stage renal disease (ESRD) later in life.

Extreme variability can be observed in the presence, severity, and type of branchial arch, otologic, audiologic, and renal abnormality from right side to left side in an affected individual and also among individuals in the same family.

Diagnosis/testing.

The diagnosis of branchiootorenal spectrum disorder is based on clinical criteria. The diagnosis is established in a proband with the clinical features and/or heterozygous pathogenic variants in EYA1, SIX1, or SIX5 identified on molecular genetic testing.

Management.

Treatment of manifestations: Excision of branchial cleft cysts/fistulae, fitting with appropriate aural habilitation, and enrollment in appropriate educational programs for the hearing impaired are appropriate. A canaloplasty should be considered to correct an atretic external auditory canal. Medical and surgical treatment for vesicoureteral reflux may prevent progression to end-stage renal disease (ESRD). ESRD may require renal transplantation.

Surveillance: Semiannual examination for hearing impairment and annual audiometry to assess progression of hearing loss; monitoring of renal function to prevent progression to ESRD; semiannual/annual examination by a nephrologist and/or urologist, as indicated.

Agents/circumstances to avoid: Nephrotoxic medications.

Evaluation of relatives at risk: At-risk relatives should be screened for hearing loss and renal involvement to allow for early diagnosis and treatment.

Genetic counseling.

BORSD is inherited in an autosomal dominant manner. The offspring of an affected individual are at a 50% risk of inheriting the pathogenic variant. Once the pathogenic variant has been identified in an affected family member, prenatal testing for a pregnancy at increased risk and preimplantation genetic testing are possible.

Diagnosis

Branchiootorenal spectrum disorder comprises branchiootorenal (BOR) syndrome and branchiootic syndrome (BOS), two phenotypes that differ only by the presence or absence of renal abnormality. Many affected persons in families with diagnosis confirmed by molecular genetic testing have clinical findings consistent with the diagnosis of BOR syndrome; however, some affected persons in these same families have clinical findings consistent with BOS [Orten et al 2008]. For this reason, these syndromes are best considered as one disorder known as branchiootorenal spectrum disorder.

Suggestive Findings

Branchiootorenal spectrum disorder (BORSD) should be suspected in individuals with the following characteristics. See Table 1.

Table 1.

Major and Minor Diagnostic Criteria for Branchiootorenal Spectrum Disorder

Major CriteriaMinor Criteria
  • Second branchial arch anomalies
  • Deafness
  • Preauricular pits
  • Auricular malformation
  • Renal anomalies
  • External auditory canal anomalies
  • Middle ear anomalies
  • Inner ear anomalies
  • Preauricular tags
  • Other: facial asymmetry, palate abnormalities

In the absence of a family history, three or more major criteria OR two major and two minor criteria (Table 1) must be present to make the clinical diagnosis of BORSD [Chang et al 2004].

Second branchial arch anomalies

  • Branchial cleft sinus tract appearing as a pinpoint opening anterior to the sternocleidomastoid muscle, usually in the lower third of the neck
  • Branchial cleft cyst appearing as a palpable mass under the sternocleidomastoid muscle, usually above the level of the hyoid bone

Otologic findings

  • Deafness: mild to profound in degree; conductive, sensorineural, or mixed in type (see Deafness and Hereditary Hearing Loss Overview)
  • Preauricular pits
  • Auricular malformation (lop ear, cupped ear)
  • Preauricular tags
  • Abnormalities of the external auditory canal: atresia or stenosis
  • Middle ear abnormalities: malformation, malposition, dislocation, or fixation of the ossicles; reduction in size or malformation of the middle ear space
  • Inner ear abnormalities: cochlear hypoplasia; enlargement of the cochlear and vestibular aqueducts; hypoplasia of the lateral semicircular canal [Ceruti et al 2002, Kemperman et al 2002]

Renal anomalies

  • Renal agenesis, hypoplasia, dysplasia
  • Uretero-pelvic junction (UPJ) obstruction
  • Calyceal cyst/diverticulum
  • Calyectasis, pelviectasis, hydronephrosis, and vesicoureteral reflux

Note: Individuals with an affected family member need only one major criterion to make the diagnosis of BORSD [Chang et al 2004].

Establishing the Diagnosis

The diagnosis of a branchiootorenal spectrum disorder is established in a proband with the clinical features listed in Suggestive Findings and/or by identification of a heterozygous pathogenic variant in one of the genes listed in Table 2.

Molecular genetic testing approaches can include a combination of gene-targeted testing (multigene panel) and comprehensive genomic testing (chromosomal microarray analysis, exome sequencing, exome array, genome sequencing) depending on the phenotype.

Gene-targeted testing requires that the clinician determine which gene(s) are likely involved, whereas genomic testing does not. Because the phenotype of branchiootorenal spectrum disorder is broad, individuals with the distinctive findings described in Suggestive Findings are likely to be diagnosed using gene-targeted testing (see Option 1), whereas those with atypical features in whom the diagnosis of branchiootorenal spectrum disorder has not been considered are more likely to be diagnosed using genomic testing (see Option 2).

Option 1

When the phenotypic and laboratory findings suggest the diagnosis of branchiootorenal spectrum disorder the use of a multigene panel is recommended.

A multigene panel including EYA1, SIX1, SIX5, and other genes of interest (see Differential Diagnosis) is most likely to identify the genetic cause of the condition at the most reasonable cost while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this GeneReview. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.

For this disorder a multigene panel that also includes deletion/duplication analysis is recommended (see Table 1).

For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic tests can be found here.

Option 2

When the diagnosis of branchiootorenal spectrum disorder is not considered because an individual has atypical phenotypic features, comprehensive genomic testing (which does not require the clinician to determine which gene[s] are likely involved) is the best option. Exome sequencing is most commonly used; genome sequencing is also possible.

Exome array (when clinically available) may be considered if exome sequencing is not diagnostic.

For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.

Table 2.

Molecular Genetic Testing Used in Branchiootorenal Spectrum Disorder (BORSD)

Gene 1, 2Proportion of BORSD Attributed to Pathogenic Variants in GeneProportion of Pathogenic Variants 3 Detectable by Method
Sequence analysis 4Gene-targeted deletion/duplication analysis 5
EYA140% 680% 620% 6
SIX12% 7100% 7Unknown 8
SIX52.5% 9100% 9Unknown 8
Unknown 10>50%NA
1.

Genes are listed in alphabetic order.

2.

See Table A. Genes and Databases for chromosome locus and protein.

3.

See Molecular Genetics for information on allelic variants detected in this gene.

4.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

5.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

6.

Chang et al [2004], Krug et al [2011]

7.

Heterozygous pathogenic variants were identified in 10 (4.0%) of 247 unrelated individuals with BORSD syndrome in whom an EYA1 or SIX5 pathogenic variant was not identified [Kochhar et al 2008]. This prevalence implies that SIX1 pathogenic variants account for approximately 2% of cases of BORSD.

8.

No data on detection rate of gene-targeted deletion/duplication analysis are available.

9.

Heterozygous pathogenic variants were identified in 5 (5.2%) of 95 unrelated individuals with BORSD in whom an EYA1 or SIX1 pathogenic variant was not identified [Hoskins et al 2007]; these data imply a SIX5 mutation rate of fewer than 2.5% of persons with BORSD syndrome.

10.

Brophy et al [2013], Morisada et al [2014]

Clinical Characteristics

Clinical Description

The presence, severity, and type of branchial arch, otologic, audiologic, and renal abnormality in branchiootorenal spectrum disorder (BORSD) may differ from right side to left side in an affected individual and among individuals in the same family.

Second branchial arch anomalies include branchial cleft cyst or sinus tract (cervical fistulae) (50%). Cysts can become infected and sinus tracts can drain.

Otologic findings, found in more than 90% of individuals with BORSD [Chang et al 2004], include:

  • Hearing loss (>90%) [Stinckens et al 2001]
    • Type: mixed (52%), conductive (33%), sensorineural (29%)
    • Severity: mild (27%), moderate (22%), severe (33%), profound (16%)
    • Non-progressive (~70%), progressive (~30%, correlates with presence of a dilated vestibular aqueduct on computed tomography) [Kemperman et al 2004]
  • Abnormalities of the pinnae
    • Preauricular pits (82%)
    • Lop ear malformation (36%)
    • Preauricular tags (13%)
  • Abnormalities of the external auditory canal. Atresia or stenosis (29%)
  • Middle ear abnormalities. Malformation, malposition, dislocation, or fixation of the ossicles; reduction in size or malformation of the middle ear space
  • Inner ear abnormalities. Variably present:
    • Cochlear hypoplasia
    • Enlargement of the cochlear and vestibular aqueducts
    • Hypoplasia of the lateral semicircular canal [Ceruti et al 2002, Kemperman et al 2002]

Renal anomalies. Renal malformations can be unilateral or bilateral and can occur in any combination. The most severe malformations result in pregnancy loss (since bilateral renal agenesis can end in miscarriage) or neonatal death; ESRD later in life may necessitate dialysis or transplantation.

Although renal anomalies are common, the true prevalence is difficult to establish because not all affected individuals undergo intravenous pyelography or renal ultrasonography. In a study in which 21 affected individuals had one of these two tests, renal anomalies were noted in 67% [Chang et al 2004] and included the following:

  • Renal agenesis (29%), hypoplasia (19%), dysplasia (14%)
  • Uretero-pelvic junction (UPJ) obstruction (10%)
  • Calyceal cyst/diverticulum (10%)
  • Calyectasis, pelviectasis, hydronephrosis, and vesicoureteral reflux (5% each)

Other findings [Chang et al 2004]

  • Lacrimal duct aplasia
  • Short or cleft palate
  • Retrognathia
  • Euthyroid goiter
  • Facial nerve paralysis
  • Gustatory lacrimation

Genotype-Phenotype Correlations

A genotype-phenotype correlation has not been defined for BORSD. In fact, families have been identified segregating SIX1 pathogenic variants and exhibiting broad intrafamilial phenotypic variability. For example, in one large family all 18 persons with hearing loss carried the p.Tyr129Cys variant in SIX1, although six persons also had ear pits, three others had branchial cysts, and two developed a renal carcinoma [Ruf et al 2004]. In a small Tunisian family [Mosrati et al 2011], five persons with moderate-to-profound mixed or sensorineural hearing loss had the SIX1 p.Glu125Lys variant. Preauricular pits were present in four persons, but none had other branchial, renal, or temporal bone anomalies. These reports suggest that genetic background and stochastic factors influence intrafamilial phenotypic variability and preclude making genotypic-phenotypic correlations.

Penetrance

Based on careful clinical studies of large pedigrees, branchiootorenal spectrum disorder appears to have 100% penetrance, although expressivity is highly variable [Chang et al 2004].

Nomenclature

BOR syndrome was originally known eponymously as Melnick-Fraser syndrome. While phenotypic descriptions are applied to BOR, BOS, and even branchiootoureteral (BOU) syndrome, these clinical distinctions must be considered in light of the associated molecular genetics. Affected individuals within a single family may have findings of any of the phenotypes. Thus, the term "branchiootorenal spectrum disorder" has replaced the older descriptive phenotype designations.

Prevalence

The prevalence of branchiootorenal spectrum disorder is not known. In 1976, GR Fraser surveyed 3,640 children with profound hearing impairment and found only five (0.15%) with a family history of branchial fistulae and preauricular pits (1:700,000) [Fraser 1976]. Four years later, FC Fraser et al [1980] surveyed 421 children attending schools for the deaf in Montreal for preauricular pits and branchial fistulae, and identified 19 children with preauricular pits; two also had branchial fistulae. The parents of nine children agreed to participate in further investigation, which included audiograms and intravenous pyelograms, and confirmed BORSD segregating in four families, leading the authors to estimate the prevalence of BORSD at 1:40,000, or roughly 2% of profoundly deaf children. Interestingly, Morisada et al [2014] reported that only 250 patients with BORSD (95% confidence interval, 170-320) were identified in clinics in Japan in 2009-2010, suggesting that there are ethnic differences in the prevalence. In the authors' experience at the Molecular Otolaryngology and Renal Research Laboratories (MORL), of 3,379 persons screened for genetic causes of hearing loss (no exclusionary criteria), the diagnostic rate was 42.4% (1,434 persons had an identified genetic cause of hearing loss); 25 of the 1,434 persons (1.7%) had BORSD [Smith, unpublished data].

Differential Diagnosis

More than 400 genetic syndromes that include hearing loss have been described [Toriello & Smith 2013, Korver et al 2017]. Although the branchiootorenal spectrum disorder has a distinctive phenotype that is readily appreciated when segregating in large families, the diagnosis can be difficult to establish in small families. See Hereditary Hearing Loss and Deafness Overview.

Management

Evaluations Following Initial Diagnosis

To establish the extent of disease and needs in an individual diagnosed with branchiootorenal spectrum disorder the evaluations summarized in this section (if not performed as part of the evaluation that led to the diagnosis) are recommended:

  • Second branchial arch anomalies. Cervical examination for fistulae; computed tomography of the neck if a mass is palpable under the sternocleidomastoid muscle above the level of the hyoid bone
  • Otologic findings
    • A complete assessment of auditory acuity using ABR, emission testing, and pure tone audiometry (see Hereditary Hearing Loss and Deafness Overview)
    • Computed tomography of the temporal bones, especially if the hearing impairment fluctuates or is progressive
  • Renal anomalies. Renal ultrasound examination and/or excretory urography (intravenous pyelography); tests of renal function: BUN and creatinine; urinanalysis
  • Other. Consultation with a clinical geneticist and/or genetic counselor

Treatment of Manifestations

Recommended treatment:

  • Second branchial arch anomalies. Excise branchial cleft cysts/fistulae.
  • Otologic anomalies
    • Fit with appropriate aural habilitation as indicated.
    • Enroll in an appropriate educational program for the hearing impaired.
    • Consider canaloplasty to correct an atretic canal; however, in individuals with BORSD, associated middle ear anomalies (e.g., a facial nerve overriding the oval window) can preclude a successful result. Evaluate the status of the middle ear preoperatively by obtaining thin-cut CT images of the temporal bones in both the axial and coronal planes.
  • Renal anomalies
    • Treat urologic and renal abnormalities in the standard manner.
    • If renal anomalies (e.g., vesicoureteral reflux) are present, medical and surgical treatment may prevent progression to end-stage renal disease (ESRD).
    • If ESRD develops, consider renal transplantation.

Surveillance

Surveillance for otologic and renal anomalies should be offered as described below.

Otologic anomalies. Serial audiometry to survey for progression of hearing loss:

  • Annual examination by a physician who is familiar with hereditary hearing impairment
  • Semiannual examination for hearing impairment and annual audiometry to assess stability of hearing loss (more frequent if fluctuation or progression is described by the affected individual)

Renal anomalies. Semiannual/annual examination by a nephrologist and/or urologist may be indicated based on level of renal function and type of renal and/or collecting system malformation.

Agents/Circumstances to Avoid

Individuals with renal abnormalities should use appropriate caution when taking medications (i.e., antibiotics and analgesics) that can impair renal function or require normal renal physiology for clearance.

Evaluation of Relatives at Risk

It is appropriate to evaluate apparently asymptomatic relatives at risk for BORSD to determine if a treatable and/or possibly progressive otologic and/or renal abnormality is present. Evaluations can include:

  • Molecular genetic testing if the pathogenic variant in the family is known;
  • Comprehensive physical examination (to include hearing evaluation and renal imaging and function studies) if the pathogenic variant in the family is not known.

See Genetic Counseling for issues related to testing of at-risk relatives for genetic counseling purposes.

Therapies Under Investigation

Search ClinicalTrials.gov in the US and EU Clinical Trials Register in Europe for information on clinical studies for a wide range of diseases and conditions. Note: There may not be clinical trials for this disorder.