Glutaric Acidemia Type 1

Watchlist
Retrieved
2021-01-18
Source
Trials
Genes
Drugs

Summary

Clinical characteristics.

The phenotypic spectrum of untreated glutaric acidemia type 1 (GA-1) ranges from the more common form (infantile-onset disease) to the less common form (later-onset disease – i.e., after age 6 years). Of note, the GA-1 phenotype can vary widely between untreated family members with the same genotype, primarily as a function of the age at which the first acute encephalopathic crisis occurred: three months to six years in infantile-onset GA-1 and after age six years in later-onset GA-1. Characteristically these crises result in acute bilateral striatal injury and subsequent complex movement disorders. In the era of newborn screening (NBS), the prompt initiation of treatment of asymptomatic infants detected by NBS means that most individuals who would have developed manifestations of either infantile-onset or later-onset GA-1 remain asymptomatic; however, they may be at increased risk for other manifestations (e.g., renal disease) that are becoming apparent as the understanding of the natural history of treated GA-1 continues to evolve.

Diagnosis/testing.

Because the early initiation of treatment dramatically improved the outcome for persons with GA-1, an international guideline group has recommended NBS. The diagnosis of GA-1 in a proband with a positive NBS result or suggestive biochemical and/or clinical findings is confirmed by identification of biallelic pathogenic variants in GCDH or, when molecular genetic test results are uncertain, by detection of significantly reduced activity of the enzyme glutaryl-CoA dehydrogenase (GCDH) in cultured fibroblasts or leukocytes.

Management.

Prevention of primary manifestations: When GA-1 is suspected during the diagnostic evaluation of a newborn with an elevated concentration of 3-OH-GA in plasma or urine, metabolic treatment should be initiated immediately. Development and evaluation of treatment plans, training and education of affected individuals and their families, and avoidance of side effects of dietary treatment (i.e., malnutrition, growth failure) require a multidisciplinary approach by experienced subspecialists from a specialized metabolic center. The main principles of treatment are to reduce lysine oxidation and enhance physiologic detoxification of glutaryl-CoA. Combined metabolic therapy includes low-lysine diet, carnitine supplementation, and emergency treatment during episodes with the goal of averting catabolism and minimizing CNS exposure to lysine and its toxic metabolic byproducts.

Surveillance: Regular evaluations by a metabolic specialist and metabolic dietician; routine evaluation of growth parameters and head circumference, developmental progress and educational needs, clinical signs and symptoms of movement disorders, biochemical parameters, and renal function (in adolescents and adults).

Agents/circumstances to avoid: Excessive dietary protein or protein malnutrition inducing catabolic state, prolonged fasting, catabolic illness (intercurrent infection; brief febrile illness post vaccination), inadequate caloric provision during other stressors (e.g., surgery or procedure requiring fasting/anesthesia).

Evaluation of relatives at risk: Testing of all at-risk sibs of any age to allow for early diagnosis and treatment. For at-risk newborn sibs when prenatal testing was not performed: in parallel with NBS either test for the familial GCDH pathogenic variants or measure urine organic acids, plasma amino acids, and acylcarnitine profile.

Pregnancy management: It is recommended that care for a pregnant woman with GA-1 be provided by a multidisciplinary team including the treating obstetrician, a metabolic physician, and a specialist metabolic dietician.

Genetic counseling.

GA-1 is inherited in an autosomal recessive manner. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Once the GCDH pathogenic variants in an affected family member are known, carrier testing for at-risk relatives, prenatal testing for a pregnancy at increased risk, and preimplantation genetic testing are possible.

Diagnosis

Guidelines for diagnosis and management of glutaric acidemia type 1 (GA-1) due to deficiency or absence of functional glutaryl-CoA dehydrogenase were developed in 2007 and recently revised [Boy et al 2017b].

Suggestive Findings

Scenario 1: Positive Newborn Screening (NBS)

GA-1 should be suspected in infants with a positive NBS result. NBS for GA-1 primarily relies on measuring glutarylcarnitine (C5DC) in dried blood spots, which has been shown to have 96% sensitivity [Boy et al 2018]. Positive C5DC values (i.e., those above the cutoff reported by the screening laboratory) require follow-up biochemical testing with either urine organic analysis or quantitative glutaric and 3-hydroxyglutaric acid, with preference for quantitative studies if available. If either is abnormal, treatment (see Management) and testing to establish a definitive diagnosis (see Establishing the Diagnosis) should be initiated concurrently [Boy et al 2017b].

For more information on false positive and false negative results for NBS for glutaric acidemia type 1 click here (pdf).

Scenario 2: Symptomatic Individuals

GA-1 should be considered in symptomatic individuals with the following supportive clinical, neuroimaging, and laboratory findings.

Clinical findings

  • Progressive macrocephaly is observed in 75% of affected individuals and may be present prenatally [Bjugstad et al 2000]. Since macrocephaly has many etiologies, additional brain MRI findings characteristic of GA-1 would typically be the indication to consider the diagnosis of GA-1.
  • Untreated infantile-onset GA-1 (resulting from false negative NBS, NBS not performed, or caregivers noncompliant with recommended treatment) typically manifests as acute encephalopathic crisis (hypotonia, loss of motor skills, feeding difficulty, and sometimes seizures) usually occurring in the setting of an intercurrent infectious illness, fasting, or other physiological stressor. Acute neurologic injury most commonly occurs between ages three months and three years; it is followed by irreversible basal ganglia injury [Kölker et al 2006]. It may also manifest as insidious-onset basal ganglia injury without a clear acute encephalopathic crisis [Boy et al 2019].
  • Untreated late-onset GA-1 may manifest as other nonspecific neurologic abnormalities including headaches, vertigo, dementia, and ataxia [Boy et al 2018].

Brain MRI findings in 18 Dutch individuals ages 11 months to 33 years with GA-1 (most of whom were diagnosed prior to universal GA-1 NBS) included the following [Vester et al 2016]:

  • Open opercula (n=15)
  • Widening of CSF spaces / ventriculomegaly (9)
  • Attenuated signal from basal ganglia (8)
  • White matter abnormalities (5)
  • Subdural hemorrhage (SDH), probably due to stretching of bridging veins in the enlarged extra-axial fluid spaces (1). SDH is typically associated with frontotemporal hypoplasia.

Preliminary laboratory findings include significantly elevated concentrations of the following metabolites using gas chromatography / mass spectrometry or electrospray-ionization tandem mass spectrometry [Baric et al 1999, Chace et al 2003]:

  • Glutaric acid
  • 3-hydroxyglutaric acid
  • Glutarylcarnitine (C5DC)
  • Glutaconic acid

Note: Because elevations of these metabolites individually are not specific to GA-1, additional testing is required to establish the diagnosis of GA-1 (see Establishing the Diagnosis).

Establishing the Diagnosis

The diagnosis of GA-1 in a proband with suggestive biochemical and/or clinical findings is confirmed by identification of biallelic pathogenic variants in GCDH (Table 1) or, when molecular genetic test results are uncertain, by detection of significantly reduced activity of the enzyme glutaryl-CoA dehydrogenase in cultured fibroblasts or leukocytes.

Molecular genetic testing approaches can include gene-targeted testing (single-gene testing or use of a multigene panel) and comprehensive genomic testing (typically exome sequencing) depending on the indications for testing. Gene-targeted testing requires that the clinician determine which gene(s) are likely involved, whereas genomic testing does not.

  • Infants with positive newborn screening and follow-up testing (see Scenario 1) are likely to be diagnosed using gene-targeted testing.
  • Symptomatic individuals with nonspecific clinical and imaging findings in whom the diagnosis of GA-1 has not been considered (see Scenario 2) are more likely to be diagnosed using comprehensive genomic testing [Marti-Masso et al 2012].

Scenario 1

When NBS results and other laboratory findings suggest the diagnosis of GA-1, the recommended molecular genetic testing approach is single-gene testing. Sequence analysis of GCDH is generally performed first, followed by gene-targeted deletion/duplication analysis if only one or no pathogenic variant is found. The sensitivity of molecular genetic testing for GA-1 is 98%-99% [Zschocke et al 2000].

Scenario 2

When the diagnosis of GA-1 has not been considered, either a multigene panel or comprehensive genomic testing (which does not require the clinician to determine which gene[s] are likely involved) are options.

  • A multigene panel that includes GCDH and other genes of interest (see Differential Diagnosis) is most likely to identify the genetic cause of the condition at the most reasonable cost while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this GeneReview. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.
    For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic tests can be found here.
  • Comprehensive genomic testing (which does not require the clinician to determine which gene[s] are likely involved) includes exome sequencing (most commonly used) and genome sequencing. If exome sequencing is not diagnostic, exome array (when clinically available) may be considered to detect (multi)exon deletions or duplications that cannot be detected by sequence analysis. Note: To date such variants have not been identified as a cause of GA-1.
    For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.

Table 1.

Molecular Genetic Testing Used in Glutaric Acidemia Type 1

Gene 1MethodProportion of Pathogenic Variants 2 Detectable by Method
GCDHSequence analysis 3>99% 4
Gene-targeted deletion/duplication analysis 5Not available 6
1.

See Table A. Genes and Databases for chromosome locus and protein.

2.

See Molecular Genetics for information on allelic variants detected in this gene.

3.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Pathogenic variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

4.

Stenson et al [2014]

5.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

6.

While no data on detection rate of gene-targeted deletion/duplication analysis are available, the authors estimate this number to be extremely low based on extensive sequencing of GCDH in a multiethnic American population in Dr Goodman's clinical laboratory [SI Goodman, personal communication].

Quantification of glutaryl-CoA dehydrogenase enzyme activity in cultured fibroblasts or leukocytes by a clinical laboratory may help confirm the diagnosis of GA-1 in newborns with positive NBS results when GCDH sequencing is equivocal (e.g., only 1 or no detectable pathogenic variants, variants of unknown significance) or glutaric acid (GA) and 3-hydroxyglutaric acid (3-OH-GA) levels in blood and/or urine are equivocal.

Shortcomings of enzymatic testing on fibroblast cultures or leukocytes include the following:

  • Difficulty distinguishing carriers (i.e., heterozygotes for one GCDH pathogenic variant) – who by definition are not affected – from affected individuals (i.e., those with biallelic GCDH pathogenic variants) [Goodman & Kohlhoff 1975, Goodman et al 1975]. This is particularly true for the dominant negative variant (c.553_570del18) [Bross et al 2012].
  • The relatively large blood volumes (3-5 mL) required to reliably perform the leukocyte assay
  • The limited number of clinical laboratories offering enzymatic testing on leukocytes

Clinical Characteristics

Clinical Description

The phenotypic spectrum of untreated glutaric acidemia type 1 (GA-1) ranges from the more common form (infantile-onset disease) to the less common form (later-onset disease after age 6 years). Of note, the GA-1 phenotype can vary widely among untreated family members with the same genotype, primarily as a function of the age at which the first acute encephalopathic crisis occurred: three months to three years in infantile-onset GA-1 and after age six years in later-onset GA-1 [López-Laso et al 2007, Wang et al 2014]. Characteristically these crises result in acute bilateral striatal injury and subsequent complex movement disorders. Patients may also develop insidious-onset basal ganglia injury in the absence of an identified acute encephalopathic crisis.

In the era of newborn screening (NBS), the prompt initiation of treatment of asymptomatic infants detected by NBS means that most individuals who would have developed manifestations of either infantile-onset or later-onset GA-1 remain asymptomatic.

Infantile-onset GA-1. If untreated, 80%-90% of children with infantile-onset GA-1 will experience an acute encephalopathic crisis, 95% of which occur in the first 24 months of life. These crises can be precipitated by intercurrent febrile illness, febrile reaction to vaccinations, or fasting and catabolic stressors associated with anesthesia and surgical procedures [Kölker et al 2006, Boy et al 2017b]. Characteristically these crises result in acute bilateral striatal injury and are followed (typically between ages 3 months and 3 years; in rare cases, between ages 3 and 6 years) by progressive complex neurologic movement disorders. Disability and mortality are high after acute crises [Kyllerman et al 2004, Kölker et al 2006].

Dietary treatment and intense emergency treatment during intercurrent illness (see Management) have reduced the frequency of acute encephalopathic crises and movement disorders to 10%-20%.

Subdural hemorrhages, a rare manifestation of GA-1, may develop even in individuals diagnosed on NBS, managed appropriately, and without macrocephaly [Zielonka et al 2015, Ishige et al 2017]. Subdural hemorrhages may appear spontaneously or following mild head trauma in GA-1; they can also resolve spontaneously. Isolated subdural hemorrhage without other features of GA-1 on brain MRI is extremely uncommon [Vester et al 2015, Vester et al 2016].

Seizures are reported in 7% of individuals with GA-1 [Kölker et al 2015a]. While self-limited seizures may accompany the acute encephalopathic crisis, in other instances they may be the presenting manifestation [McClelland et al 2009]. Infantile spasms have been reported in some [Young-Lin et al 2013, Liu et al 2015].

When GA-1 is diagnosed after the onset of neurologic manifestations, outcome is poor and the therapeutic effect of the usual interventions is more limited [Hoffmann et al 1996, Bjugstad et al 2000, Busquets et al 2000a, Kyllerman et al 2004, Kölker et al 2006, Kamate et al 2012, Wang et al 2014]. Nonetheless, therapeutic intervention may prevent additional progressive neurologic deterioration in some [Hoffmann et al 1996, Bjugstad et al 2000, Kölker et al 2006, Badve et al 2015, Fraidakis et al 2015].

With early diagnosis and adherence to treatment, 80%-90% of individuals with GA-1 remain largely asymptomatic [Strauss et al 2011, Viau et al 2012, Couce et al 2013, Lee et al 2013, Boy et al 2018].

Insidious onset of manifestations was previously seen in an estimated 10%-20% of symptomatic individuals [Kölker et al 2006]; it now appears to be more common because early diagnosis and treatment of GA-1 have reduced the incidence of acute encephalopathic crises [Boy et al 2018].

Individuals who adhere to maintenance and emergency treatments rarely develop dystonia; those who do not are at high risk of developing a movement disorder [Kölker et al 2007, Heringer et al 2010, Strauss et al 2011, Kölker et al 2012, Boy et al 2018]. Those who have insidious onset generally have less severe movement disorders and less extensive lesions on brain MRI than those with acute encephalopathic crisis [Boy et al 2019]. The insidious phenotype may correlate with lack of adherence to chronic dietary treatment [Boy et al 2018].

Late-onset GA-1. Late-onset GA-1 is defined as onset of manifestations after age six years. Some individuals with late-onset GA-1 (e.g., mothers diagnosed due to the birth of a child with an abnormal NBS result) are entirely asymptomatic. Others have a variety of neurologic findings. Among eight symptomatic individuals ages eight to 71 years, the following were observed: chronic headaches (4), macrocephaly (4), epilepsy (2), tremor (2), and dementia (2). All had MRI evidence of frontotemporal hypoplasia and abnormal signal of the white matter; five had subependymal nodules. All showed the high excreting phenotype [Boy et al 2017a]. Others have reported clinical and neuroimaging findings [Külkens et al 2005, Pierson et al 2015, Zhang & Luo 2017].

Other reported manifestations of late-onset GA-1 include the following:

  • Peripheral neuropathy (1 adult) [Herskovitz et al 2013]
  • Brain neoplasms (in several adults and children) [Korman et al 2007, Burlina et al 2012, Herskovitz et al 2013, Pierson et al 2015, Serrano Russi et al 2018]. This finding has led to an as-yet unsubstantiated speculation about possible increased susceptibility to brain neoplasms in adults.

Non-neurologic disease manifestations observed in individuals in GA-1 regardless of age of onset. Chronic kidney disease may occur in those with GA-1, even with adherence to treatment, and may be an extracerebral manifestation in adults with GA-1 [Kölker et al 2015b].

Note: Infants with biochemical findings consistent with GA-1 on NBS, but normal blood levels of GA and 3-OH-GA and only one identifiable GCDH pathogenic variant, may warrant close clinical follow up. However, given the high sensitivity of GCDH molecular genetic testing, the chances that an infant with these findings is affected and at risk of developing acute striatal necrosis are low.

Genotype-Phenotype Correlations

Most GCDH variants reported to date are missense variants [Schmiesing et al 2017].

GA-1 biochemical (excreter) subtypes. GA-1 was originally divided into two arbitrarily defined biochemical subtypes: high excreters of urinary glutaric acid (GA) and low excreters of urinary GA [Baric et al 1999]. High excreters and low excreters are at the same risk for striatal injury [Christensen et al 2004, Kölker et al 2006]. While excreter status has no clear correlation with the clinical phenotype in childhood, evidence suggests that high excreters have higher concentrations of GA and 3-OH-GA in the CNS and have increased prevalence of progressive white matter lesions on MRI [Boy et al 2017a].

  • High excreters have no or very low glutaryl-CoA dehydrogenase activity (0%-3%) [Goodman et al 1998, Baric et al 1999, Busquets et al 2000b]. NBS sensitivity for the high excreter biochemical phenotype is 100% [Boy et al 2018].
  • Low excreters have up to 30% residual glutaryl-CoA dehydrogenase activity [Goodman et al 1998, Busquets et al 2000b]. They have biallelic GCDH pathogenic variants, at least one of which is a hypomorphic missense variant. NBS sensitivity for the low excreter biochemical phenotype is 84% [Boy et al 2018]. See Table 10 for details on variants associated with low excreter status.

Prevalence

Well over 500 individuals with GA-1 have been reported to date [Boy et al 2017b]. Prevalence estimates for GA-1 vary between 1:30,000 and 1:100,000-110,000 [Kyllerman & Steen 1980, Lindner et al 2004, Tsai et al 2017].

Details on founder variants reported in Ojibway-Cree First Nation Canadians of Manitoba and Ontario, South African Xhosa peoples, Pennsylvania Amish, Lumbee Native Americans of North Carolina, and Irish Traveler communities in the Republic of Ireland are included in Table 10.

Differential Diagnosis

Table 2.

Other Genes of Interest in the Differential Diagnosis of Glutaric Acidemia Type 1 (GA-1)

Gene(s)Differential
Diagnosis
Disorder
MOIClinical Features of Differential Diagnosis Disorder
Significant
overlapping
features
Other clinical featuresLaboratory/Imaging findings
ETFA
ETFB
ETFDH
Glutaric acidemia type 2 (see Multiple Acyl-CoA Dehydrogenase Deficiency)AR↑ glutaric acid
  • Hypotonia
  • Liver dysfunction
  • Muscle weakness
  • Cardiomyopathy
  • May result in suspected GA-1 from NBS result
  • ↑ plasma GA, 3-OH-GA, & C5DC acylcarnitine as well as many other acylcarnitine species 1
  • ↑ ethylmalonic acid
  • ↑ suberylglycine, hexanoylglycine, isovalerylglycine, isobutyrylglycine
  • Neuronal migration defects & leukodystrophy on MRI
SUGCTGlutaric acidemia type 3
(OMIM 231690)
AR↑ glutaric acid(No clinical phenotype)
  • Key diagnostic marker: massively ↑ GA/3-OH-GA ratio (not seen in GA-1)
  • ↑ plasma GA
  • Normal or minimally ↑ 3-OH-GA & C5DC acylcarnitine
  • May be only a biochemical phenotype
ASPACanavan diseaseARMacrocephaly
  • Hypotonia
  • Developmental delay & regression
  • Seizures
  • Optic atrophy
  • N-acetyl aspartate in urine
  • Leukodystrophy on MRI
>60 genes (mt & nuclear) 1Leigh syndrome
(see Mitochondrial DNA-Associated Leigh Syndrome and NARP & Nuclear Gene-Encoded Leigh Syndrome Overview)
Mat
AR
(XL)
Metabolic encephalopathy predisposing to basal ganglia disease
  • Regression w/illness
  • Progressive course
  • ↑ lactic acid in CSF or blood
  • ↑ alanine
  • Metabolic "stroke" &/or basal ganglia injury
  • Possible white matter abnormality on MRI
  • Abnormal signal of the brain stem & dentate nuclei
MCEE
MMAA
MMAB
MMADHC
MMUT
Isolated methylmalonic acidemiaARMetabolic encephalopathy predisposing to basal ganglia disease
  • Decompensation w/illness
  • DD
  • Cardiomyopathy
  • Renal failure
  • Pancreatitis
  • Bone marrow suppression
  • Optic atrophy
  • Ketoacidosis
  • Diagnostic urine organic acid testing
  • ↑ methylmalonic acid
  • Metabolic "stroke" &/or basal ganglia injury
  • Possible white matter abnormality on MRI
PCCA
PCCB
Propionic acidemiaAR

3-OH-GA = 3-hydroxyglutaric acid; AR = autosomal recessive; C5DC = glutarylcarnitine; DD = developmental delay; GA = glutaric acid; Mat = maternal; MOI = mode of inheritance; mt = mitochondrial; NBS = newborn screening; XL = X-linked

1.

Gerards et al [2016]

In children with subdural hemorrhage and bitemporal fluid collections suggestive of bitemporal hypoplasia or arachnoid cysts, targeted investigations for GA-1 should be initiated [Kölker et al 2011]. If subdural hemorrhage is an isolated feature without other findings of GA-1 on MRI, the pretest probability of GA-1 is low and targeted investigations for GA-1 are not necessary [Vester et al 2015, Boy et al 2017b].

Dystonia is a significant sequela for individuals with basal ganglia injury due to glutaric acidemia type 1. For the differential diagnosis of dystonia (i.e., inherited neurodegenerative/metabolic disorders) see Table 4 in Hereditary Dystonia Overview.

Macrocephaly. Benign familial macrocephaly, communicating hydrocephalus, and obstructive hydrocephalus should be considered in a child with macrocephaly.

Management

When glutaric acidemia type 1 (GA-1) is suspected during the diagnostic evaluation (i.e., due to elevated concentration of 3-OH-GA in plasma or urine), metabolic treatment should be initiated immediately.

Development and evaluation of treatment plans, training and education of affected individuals and their families, and avoidance of side effects of dietary treatment (i.e., malnutrition, growth failure) require a multidisciplinary approach to care including multiple subspecialists, with oversight and expertise from a specialized metabolic center.

The second revision of consensus clinical practice guidelines for the treatment of individuals with GA-1 have recently been published [Boy et al 2017b].

Evaluations Following Initial Diagnosis

To establish the extent of disease and needs in an individual following diagnosis of GA-1, the evaluations summarized in Table 3 (if not performed as part of the evaluation that led to diagnosis) are recommended.

Table 3.

Recommended Evaluations Following Initial Diagnosis of GA-1

EvaluationComment
Consultation w/metabolic physician / biochemical geneticist & specialist metabolic dietician 1
  • Transfer to specialist center w/experience in management of inherited metabolic diseases is strongly recommended.
  • Consider short hospitalization at center of expertise for inherited metabolic conditions to provide detailed education (natural history, maintenance & emergency treatment, prognosis, & risks for acute encephalopathic crises) for caregivers.
Gastrointestinal/FeedingSwallow study as needed for symptomatic patients w/feeding difficulties &/or concern for aspiration
Developmental assessmentConsider referral to developmental pediatrician.
Consultation w/neurologistAs needed to manage dystonia or seizures
Consultation w/psychologist &/or social workerTo ensure understanding of diagnosis & assessment of parental / affected individual's coping skills & resources
Consultation w/physical therapist, occupational therapist, & speech therapistAs needed when developmental delays are present
1.

After a new diagnosis of GA-1 in a child, the closest hospital and local pediatrician should also be informed.

Treatment of Manifestations

All children with GA-1 and feeding difficulties require supervision of a specialist metabolic dietitian with experience in managing diet in GA-1. German (D)-Austrian (A)-Swiss (CH) (DACH) recommendations have been used in several clinical trials and have resulted in positive outcomes [Kölker et al 2007, Heringer et al 2010, Kölker et al 2012, Boy et al 2013].

The main principles of treatment are to reduce lysine oxidation and enhance physiologic detoxification of glutaryl-CoA. Combined metabolic therapy includes the following [Boy et al 2013]:

  • Low-lysine diet
  • Carnitine supplementation
  • Emergency treatment during episodes with the goal of averting catabolism and minimizing CNS exposure to lysine and its toxic metabolic byproducts

Table 4.

Routine Daily Treatment in Individuals with Glutaric Aciduria Type 1

Principle/ManifestationTreatmentConsideration/Other
Lys restriction in those age <6 yrs
  • Low-Lys diet 1, 2, 3
  • Direct calculation of Lys intake (vs total natural protein intake) is more precise & reduces long-term day-to-day variability of Lys intake. 4
  • Lys-free, Trp-reduced amino acid formulas 3 to provide adequate supply of EAAs w/minerals, trace elements, & vitamins
  • Diet must balance ↓ lysine intake while maintaining sufficient intake of essential nutrients.
Goal Lys intake for term infants:
  • Age 0-6 mos: ~100 mg/kg/day 5
  • Age 6-12 mos: ~90 mg/kg/day) (see Table 5) 6
Natural protein intake in infantsAfter receiving prescribed quantities of Lys-free, Trp-reduced formula, infants can breastfeed on demand. 7
  • Breastfeeding should be encouraged.
  • Lys content in breast milk is ~86 mg/100 mL. 8
  • Daily Lys intake can be calculated when breast milk is the only natural protein source & breast milk intake is calculated & stable.
Lys restriction in those age >6 yrs 9
  • Controlled protein intake using natural protein w/low Lys content & avoiding Lys-rich foods is advisable even after age 6 yrs (see Table 5, footnote 2).
  • Diet should follow an age-adapted, protein-controlled protocol w/no requirement for Lys-free, Trp-restricted formula, but w/avoidance or very careful apportioning of Lys-rich natural protein food sources. 10
Transition from low-Lys diet to protein-controlled diet after age 6 yrs should be accompanied by frequent, supervised input from specialist metabolic dietician w/specific experience w/GA-1.
Maintenance of adequate Trp 11, 12 levelsFormulas should be Trp-reduced but not completely deficient in Trp.
  • Depletion may cause severe neurologic deficits. 13
  • Quantification of Trp in plasma is technically challenging.
Secondary carnitine deficiency
  • Initial oral dosage of 100 mg L-carnitine/kg per day divided into 3-4 doses is typical. 14
  • Dose is adjusted on an individual basis to maintain plasma free L-carnitine concentration w/in normal age-appropriate reference range. 15
  • Lifelong carnitine supplementation is generally recommended. 16
  • L-carnitine supplementation is considered to contribute to ↓ risk for striatal injury in individuals diagnosed early 17 & may reduce mortality rates in symptomatic individuals w/GA-1. 18
Addressing ↑ energy/caloric demands 19Fundoplication