Ritscher-Schinzel Syndrome

Watchlist
Retrieved
2021-01-18
Source
Trials
Genes
Drugs

Summary

Clinical characteristics.

Ritscher-Schinzel syndrome (RSS) is a clinically recognizable condition that includes the cardinal findings of craniofacial features, cerebellar defects, and cardiovascular malformations resulting in the alternate diagnostic name of 3C syndrome. Dysmorphic facial features may include brachycephaly, hypotonic face with protruding tongue, flat appearance of the face on profile view, short midface, widely spaced eyes, downslanted palpebral fissures, lowset ears with overfolding of the upper helix, smooth or short philtrum, and high or cleft palate. Affected individuals also typically have a characteristic metacarpal phalangeal profile showing a consistent wavy pattern on hand radiographs. RSS is associated with variable degrees of developmental delay and intellectual disability. Eye anomalies and hypercholesterolemia may be variably present.

Diagnosis/testing.

The diagnosis of Ritscher-Schinzel syndrome is established in a proband with suggestive clinical findings, including characteristic dysmorphic facial features, and/or by the identification of biallelic pathogenic variants in WASHC5 in a male or female or a hemizygous pathogenic variant in CCDC22 in a male by molecular genetic testing.

Management.

Treatment of manifestations: Standard treatment for obesity, obstructive sleep apnea, cleft palate, congenital heart defects, hypercholesterolemia, renal anomalies, immunodeficiency, and developmental delay / intellectual disability.

Surveillance: Measurement of growth parameters (particularly weight); assessment of developmental progress, mobility, self-help skills, and educational needs; and monitoring for symptoms of obstructive sleep apnea at each visit; ophthalmology evaluation annually or as clinically indicated; measurement of lipid profile periodically starting in childhood.

Genetic counseling.

WASHC5-related RSS is inherited in an autosomal recessive manner; CCDC22-related RSS is inherited in an X-linked manner.

  • Autosomal recessive inheritance. At conception, each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier.
  • X-linked inheritance. If the mother of the proband has a CCDC22 pathogenic variant, the chance of transmitting it in each pregnancy is 50%. Males who inherit the pathogenic variant will be affected; females who inherit the pathogenic variant will be heterozygotes (carriers) and will usually not be affected.

Once the causative pathogenic variant(s) have been identified in an affected family member, prenatal testing for a pregnancy at increased risk and preimplantation genetic testing are possible.

Diagnosis

Consensus clinical diagnostic criteria for Ritscher-Schinzel syndrome (RSS) have not been established. Leonardi et al [2001] suggested minimal clinical diagnostic criteria based on 28 affected individuals reported in the literature. They proposed that the following three criteria all be met:

  • Congenital heart malformation(s) other than patent ductus arteriosus alone
  • Dandy-Walker malformation, cerebellar vermis hypoplasia, or enlarged cisterna magna
  • Cleft palate OR ocular coloboma OR four of the following:
    • Prominent occiput
    • Prominent forehead
    • Downslanted palpebral fissures
    • Widely-spaced eyes
    • Depressed nasal bridge
    • Micrognathia

However, these clinical criteria would exclude affected individuals who may not exhibit cerebellar or cardiac malformations in whom Ritscher-Schinzel syndrome has been molecularly confirmed.

Suggestive Findings

Ritscher-Schinzel syndrome (RSS) should be suspected in an individual with intellectual disability, characteristic facial features, cardiac malformations, malformations of the posterior fossa, and characteristic hand radiographs.

Clinical findings

  • Mild-to-severe intellectual disability
  • Characteristic dysmorphic facial features
    • Macrocephaly
    • Brachycephaly
    • Flat occiput (prominent occiput in some)
    • Hypotonic face with a tendency to a protruding tongue
    • Short midface
    • Flat appearance of the face on profile view
    • Highly arched and thick eyebrows
    • Downslanted palpebral fissures
    • Widely spaced eyes
    • Depressed nasal bridge
    • Lowset ears; overfolding of the upper helix
    • Smooth or short philtrum
    • High palate or cleft palate
    • Short broad neck with a low posterior hair line and webbing

Imaging findings

  • Cardiac malformations (See Clinical Description, Cardiac malformations.)
  • Brain MRI
    • Dandy-Walker malformation
    • Hypoplasia or dysplasia of the cerebellar vermis
    • Hydrocephalus
  • Hand radiographs
    • Brachydactyly, especially of the second ray
    • Shortening of the first metacarpal and the fifth distal phalanx
    • Characteristic metacarpal phalangeal pattern profile (See Clinical Description, Limb abnormalities.)

Establishing the Diagnosis

The diagnosis of Ritscher-Schinzel syndrome is established in a proband with suggestive clinical findings including characteristic dysmorphic facial features, and/or by the identification of biallelic pathogenic variants in WASHC5 in a male or female OR a hemizygous pathogenic variant in CCDC22 in a male by molecular genetic testing (see Table 1).

Molecular genetic testing approaches can include a combination of gene-targeted testing (concurrent or serial single-gene testing, multigene panel) and comprehensive genomic testing (chromosomal microarray analysis, exome sequencing, genome sequencing) depending on the phenotype.

Gene-targeted testing requires that the clinician determine which gene(s) are likely involved, whereas genomic testing does not. Because the phenotype of Ritscher-Schinzel syndrome is broad, individuals with the distinctive findings described in Suggestive Findings are likely to be diagnosed using gene-targeted testing (see Option 1), whereas those in whom the diagnosis of Ritscher-Schinzel syndrome has not been considered are more likely to be diagnosed using genomic testing (see Option 2).

Option 1

When the phenotypic and radiographic findings suggest the diagnosis of Ritscher-Schinzel syndrome molecular genetic testing approaches can include concurrent or serial single-gene testing, or use of a multigene panel.

Single-gene testing. Sequence analysis of WASHC5 and CCDC22 detects small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected, although inability to amplify an exon may suggest a whole-exon or larger deletion in a male with an X-linked condition.

  • If the individual is of First Nations (FN) heritage (indigenous people of Canada who are not Metis or Inuit) or is female, sequence analysis of WASHC5 is recommended first.
    If only one or no pathogenic variant is found, gene-targeted deletion/duplication analysis to detect intragenic deletions or duplications may be considered.
  • In a male proband who is not of FN heritage, sequence analysis of CCDC22 may be considered first.

A multigene panel that includes WASHC5, CCDC22, and other genes of interest (see Differential Diagnosis) is most likely to identify the genetic cause of the condition at the most reasonable cost while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this GeneReview. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.

For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic tests can be found here.

Option 2

When the diagnosis of Ritscher-Schinzel syndrome is not considered because an individual has atypical phenotypic features, comprehensive genomic testing (which does not require the clinician to determine which gene[s] are likely involved) is the best option. Chromosomal microarray analysis (CMA) and exome sequencing are most commonly used; genome sequencing is also possible.

Chromosomal microarray analysis (CMA) uses oligonucleotide or SNP arrays to detect genome-wide large deletions/duplications that cannot be detected by sequence analysis.

Individuals with a chromosome 6p25 deletion have features that can overlap with RSS (see Differential Diagnosis) [Descipio et al 2005, Micheil Innes 2005].

For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.

Table 1.

Molecular Genetic Testing Used in Ritscher-Schinzel Syndrome (RSS)

Gene 1, 2Proportion of RSS Attributed to Pathogenic Variants in GeneProportion of Pathogenic Variants 3 Detectable by Method
Sequence
analysis 4
Gene-targeted deletion/duplication analysis 5
CCDC22<2% 6UnknownUnknown 7
WASHC5>98% 8~99% 9Unknown 7
Unknown 10UnknownNA
1.

Genes are listed in alphabetic order.

2.

See Table A. Genes and Databases for chromosome locus and protein.

3.

See Molecular Genetics for information on allelic variants detected in this gene.

4.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Pathogenic variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

5.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods that may be used include quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

6.

A variant in this gene was reported in two male sibs of Austrian origin [Kolanczyk et al 2015]. Another variant was reported in a family from a large X-linked kindred with limited clinical information [Voineagu et al 2012].

7.

No data on detection rate of gene-targeted deletion/duplication analysis are available.

8.

This refers to the proportion of affected individuals of First Nations heritage; the proportion of affected individuals of other ethnicities who have biallelic pathogenic variants in WASHC5 is unknown.

9.

All affected individuals of First Nations heritage from Northern Ontario and Manitoba who were tested for a sequence variant in this gene were found to be homozygous for the c.3335+2T>A variant [Elliott et al 2013]. Most other WASHC5 reported variants are associated with spastic paraplegia 8 (see Genetically Related Disorders).

10.

Individuals from a large Colombian kindred identified as having RSS were not identified to have any pathogenic variants in WASHC5 or CCDC22, indicating genetic heterogeneity [Pira-Paredes et al 2017].

Clinical Characteristics

Differential Diagnosis

6p25 deletion (OMIM 612582). Individuals with a chromosome 6p25 deletion have features that can overlap with Ritscher-Schinzel Syndrome (RSS) [Descipio et al 2005, Micheil Innes 2005]. 6p25 deletion syndrome shares the following features with RSS: intellectual disability, Dandy-Walker malformation, hydrocephalus, congenital heart defects, anomalies of the anterior chamber of the eye, and craniofacial findings (prominent forehead, midface hypoplasia, downslanting palpebral fissures, hypertelorism, epicanthic folds, ptosis, proptosis, external ear anomalies, flat nasal bridge, short or smooth philtrum, and a high arched palate).

6p25 deletion can be distinguished from RSS by the presence of the 6p25 deletion on chromosomal microarray analysis and an overall craniofacial gestalt distinct from RSS.

Other chromosome anomalies may be also be associated with intellectual disability, congenital heart defects, and craniofacial dysmorphisms and can be distinguished by the presence of a chromosome abnormality.

Table 2.

Disorders to Consider in the Differential Diagnosis of Ritscher-Schinzel Syndrome

Differential Diagnosis DisorderGene(s)MOIClinical Features of Differential Diagnosis Disorder
Overlapping w/RSSDistinguishing from RSS
Joubert Syndrome>30 genes 1AR
(XL, digenic) 2
  • ID
  • Hypoplasia of the cerebral vermis
  • Ocular colobomas
  • Polydactyly
  • Retinal dystrophy
  • Cystic kidneys
  • Presence of "molar tooth sign" neuroradiologic finding
Ellis-van Creveld syndrome (OMIM 225500)EVC
EVC2
AR
  • CHD
  • Dandy-Walker malformation
  • Limb & palate anomalies
  • Polydactyly
  • Short ribs
  • Absence of characteristic RSS facial features
Cornelia de Lange syndromeHDAC8
NIPBL
RAD21
SMC1A
SMC3
AD 3
XL
  • ID
  • CHD
  • Craniofacial dysmorphisms
  • Distal limb anomalies
  • Absence of cerebellar hypoplasia
  • Characteristic facial features
CHARGE syndromeCHD7AD 3
  • ID
  • Dysmorphic facial features
  • Coloboma
  • Palate anomalies
  • CHD
  • Choanal atresia
  • Inner-ear dysgenesis
  • Facial nerve palsies
  • Pituitary dysfunction
  • Absence of characteristic RSS facial features
Kabuki syndromeKDM6A
KMT2D
AD
XL 4
  • ID
  • Coloboma
  • Palate anomalies
  • Dysmorphic craniofacial features
  • Characteristic facial features
  • Persistence of fetal fingertip pads
Frontonasal dysplasia
(OMIM PS136760)
ALX1
ALX3
ALX4
AR
  • ID
  • Dysmorphic craniofacial features
  • Hypertelorism
  • Palate anomalies
  • Distal limb anomalies
  • Encephalocele
  • Nasal clefting
  • Distinctive craniofacial features
RSS-like syndrome 5VPS35LAR
  • ID
  • Dysmorphic craniofacial features
  • CHD
  • Coloboma
  • Cerebellar vermis hypoplasia
  • Severe growth restriction
  • Microphthalmia
  • Periventricular nodular heterotopia
  • Chondrodysplasia punctata
  • Mesomelia of upper extremities
Loucks-Innes syndrome 6DPH1AR
  • ID
  • Short stature
  • Dandy-Walker malformation, cerebellar vermis hypoplasia, & posterior fossa cyst
  • CHD
  • Renal anomalies
  • Distinctive craniofacial features
  • Ectodermal findings

AD = autosomal dominant; AR = autosomal recessive; CHD = congenital heart defect; ID = intellectual disability; MOI = mode of inheritance; RSS = Ritscher-Schinzel syndrome; XL = X-linked

1.

See Joubert Syndrome.

2.

Joubert syndrome is predominantly inherited in an autosomal recessive manner. Joubert syndrome caused by pathogenic variants in OFD1 is inherited in an X-linked manner. Digenic inheritance has been reported.

3.

Typically caused by a de novo pathogenic variant

4.

The proportion of Kabuki syndrome caused by de novo variants is unknown, but is likely high based on clinical experience.

5.

Kato et al [2019]

6.

Loucks et al [2015]

Management

Evaluations Following Initial Diagnosis

To establish the extent of disease and needs in an individual diagnosed with Ritscher-Schinzel syndrome (RSS), the evaluations summarized in Table 3 (if not performed as part of the evaluation that led to the diagnosis) are recommended.

Table 3.

Recommended Evaluations Following Initial Diagnosis in Individuals with Ritscher-Schinzel Syndrome

SystemEvaluationComment
ConstitutionalMeasure growth parameters.To assess for short stature &/or obesity
RespiratoryConsider polysomnogram.In those w/obesity who have symptoms of sleep apnea
CraniofacialClinical assessment for cleft palate &/or micrognathiaConsider referral to craniofacial clinic.
EyesOphthalmology evaluationTo evaluate for eye anomalies & visual acuity
CardiovascularEchocardiogram to screen for congenital heart defectsConsider referral to cardiologist.
Lipid profile 1To screen for hypercholesterolemia in older children, adolescents, & adults
RenalRenal ultrasoundTo evaluate for structural renal anomalies
NeurologicNeurologic evaluation
Brain MRI, if not performed as part of initial investigationsStructural brain abnormalities are commonly seen in addition to hydrocephalus.
DevelopmentDevelopmental assessment
  • To incl motor, adaptive, cognitive, & speech/ language evaluation
  • Evaluation for early intervention / special education
Psychiatric/
Behavioral
Neuropsychiatric evaluation
  • For individuals age >12 mo
  • Particularly useful at school entry to help formulate an appropriate education plan
ImmunologicImmunologic screening 2
  • In those w/repeated bacterial infections
  • Consider referral to immunologist.
Miscellaneous/
Other
Consultation w/clinical geneticist &/or genetic counselorTo incl genetic counseling
Family support/resourcesAssess:
  • Use of community or online resources such as Parent to Parent
  • Need for social work involvement for parental support
  • Need for home nursing referral
1.

Including measurement of total cholesterol, HDL, and LDL cholesterol concentrations. Fasting is not required [Mora 2016].

2.

Including serum immunoglobulin levels and assessment of previous immune responses (e.g., measurement of titers from previous immunizations)

Treatment of Manifestations

Table 4.

Treatment of Manifestations in Individuals with Ritscher-Schinzel Syndrome

Manifestation/ConcernTreatmentConsiderations/Other
ObesityStandard treatmentIncl referral to nutritional specialists to monitor food intake & weight
Obstructive sleep apneaStandard treatmentMay incl weight control, removal of tonsils/adenoids, &/or CPAP
Cleft palateStandard surgical treatment, ideally by a specialized craniofacial team
Congenital heart defectsStandard treatment
HypercholesterolemiaStandard treatment incl consideration of oral HMG-CoA reductase inhibitors (statins) 1Other considerations incl optimizing weight, ↑ physical activity, & optimizing dietary fiber intake
Renal anomaliesStandard treatment per urologist &/or nephrologist
ImmunodeficiencyStandard treatment per immunologist
Family/Community
  • Ensure appropriate social work involvement to connect families w/local resources, respite, & support.
  • Coordinate care to manage multiple subspecialty appointments, equipment, medications, & supplies.
  • Ongoing assessment of need for palliative care involvement &/or home nursing
  • Consider involvement in adaptive sports or Special Olympics.
1.

Particularly if other cardiovascular risk factors (smoking, diabetes mellitus, hypertension) are identified

Developmental Disability / Intellectual Disability Management Issues

The following information represents typical management recommendations for individuals with developmental delay / intellectual disability in the United States; standard recommendations may vary from country to country.

Ages 0-3 years. Referral to an early intervention program is recommended for access to occupational, physical, speech, and feeding therapy as well as infant mental health services, special educators, and sensory impairment specialists. In the US, early intervention is a federally funded program available in all states that provides in-home services to target individual therapy needs.

Ages 3-5 years. In the US, developmental preschool through the local public school district is recommended. Before placement, an evaluation is made to determine needed services and therapies and an individualized education plan (IEP) is developed for those who qualify based on established motor, language, social, or cognitive delay. The early intervention program typically assists with this transition. Developmental preschool is center based; for children too medically unstable to attend, home-based services are provided.

All ages. Consultation with a developmental pediatrician is recommended to ensure the involvement of appropriate community, state, and educational agencies (US) and to support parents in maximizing quality of life. Some issues to consider:

  • Individualized education plan (IEP) services:
    • An IEP provides specially designed instruction