Mpv17-Related Mitochondrial Dna Maintenance Defect

Watchlist
Retrieved
2021-01-18
Source
Trials
Genes
Drugs

Summary

Clinical characteristics.

MPV17-related mitochondrial DNA (mtDNA) maintenance defect presents in the vast majority of affected individuals as an early-onset encephalohepatopathic (hepatocerebral) disease that is typically associated with mtDNA depletion, particularly in the liver. A later-onset neuromyopathic disease characterized by myopathy and neuropathy, and associated with multiple mtDNA deletions in muscle, has also rarely been described. MPV17-related mtDNA maintenance defect, encephalohepatopathic form is characterized by:

  • Hepatic manifestations (liver dysfunction that typically progresses to liver failure, cholestasis, hepatomegaly, and steatosis);
  • Neurologic involvement (developmental delay, hypotonia, microcephaly, and motor and sensory peripheral neuropathy);
  • Gastrointestinal manifestations (gastrointestinal dysmotility, feeding difficulties, and failure to thrive); and
  • Metabolic derangements (lactic acidosis and hypoglycemia).

Less frequent manifestations include renal tubulopathy, nephrocalcinosis, and hypoparathyroidism. Progressive liver disease often leads to death in infancy or early childhood. Hepatocellular carcinoma has been reported.

Diagnosis/testing.

The diagnosis of MPV17-related mtDNA maintenance defect is established in a proband by the identification of biallelic pathogenic variants in MPV17 by molecular genetic testing.

Management.

Treatment of manifestations: Ideally management is by a multidisciplinary team including specialists in hepatology, neurology, nutrition, clinical genetics, and child development. Nutritional support should be provided by a dietitian experienced in managing children with liver diseases; prevention of hypoglycemia requires frequent feeds and uncooked cornstarch (1-2 g/kg/dose). Although liver transplantation remains the only treatment option for liver failure, it is controversial because of the multisystem involvement in this disorder.

Prevention of secondary complications: Prevent nutritional deficiencies (e.g., of fat-soluble vitamins) by ensuring adequate intake.

Surveillance: Monitor:

  • Liver function to assess progression of liver disease;
  • Serum alpha fetoprotein (AFP) concentration and hepatic ultrasound examination for evidence of hepatocellular carcinoma;
  • Development, neurologic status, and nutritional status.

Agents/circumstances to avoid: Prolonged fasting.

Genetic counseling.

MPV17-related mtDNA maintenance defect is inherited in an autosomal recessive manner. Each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Carrier testing for at-risk relatives and prenatal testing for a pregnancy at increased risk are possible if the pathogenic variants in the family are known.

Diagnosis

Suggestive Findings

MPV17-related mitochondrial DNA (mtDNA) maintenance defect should be suspected in individuals with the following clinical features, brain MRI findings, and supportive laboratory findings.

Clinical features

  • Hepatic
    • Liver dysfunction or failure
    • Cholestasis and steatosis
    • Hepatomegaly
  • Neurologic
    • Developmental delay
    • Hypotonia
    • Microcephaly
    • Motor and sensory peripheral neuropathy
  • Gastrointestinal
    • Gastrointestinal dysmotility
    • Feeding difficulties
    • Failure to thrive

Brain MRI findings

  • White matter abnormalities
  • Brain stem signal abnormalities
  • Basal ganglia signal abnormalities

Supportive laboratory findings

  • Serum testing
    • Elevated hepatic transaminases and hyperbilirubinemia
    • Lactic acidosis
    • Hypoglycemia
  • Liver histology
    • Steatosis
    • Cirrhosis
  • Mitochondrial DNA analysis in liver and muscle [El-Hattab et al 2018]
    • Mitochondrial DNA content:
      • Is typically reduced in liver tissue (<20% of that found in tissue- and age-matched controls);
      • Can also be reduced in muscle tissue (typically <30% of that found in tissue- and age-matched controls).
    • Multiple mtDNA deletions have been occasionally described in muscle and liver.
  • Electron transport chain (ETC) assays in liver and muscle tissue of affected individuals typically show decreased activity of multiple complexes with complex I having reduced activity in 80% of affected individuals [El-Hattab et al 2018].
    Note: Neither mtDNA analysis nor ETC assays are required to make the diagnosis of MPV17-related mtDNA maintenance defect.

Establishing the Diagnosis

The diagnosis of MPV17-related mtDNA maintenance defect is established in a proband with biallelic pathogenic variants in MPV17 by molecular genetic testing (see Table 1).

Because the phenotype of MPV17-related mtDNA maintenance defect is indistinguishable from many other inherited disorders with encephalohepatopathy, recommended molecular genetic testing approaches include use of a multigene panel or comprehensive genomic testing.

Note: Single-gene testing (sequence analysis of MPV17, followed by gene-targeted deletion/duplication analysis) is rarely useful.

  • A multigene panel that includes MPV17 and other genes of interest (see Differential Diagnosis) is most likely to identify the genetic cause of the condition at the most reasonable cost while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this GeneReview. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.
    For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic tests can be found here.
  • Comprehensive genomic testing (which does not require the clinician to determine which gene[s] are likely involved) is another good option. Exome sequencing is most commonly used; genome sequencing is also possible.
    Exome array (when clinically available) may be considered if exome sequencing is not diagnostic, particularly when evidence supports autosomal dominant inheritance.
    For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.

Table 1.

Molecular Genetic Testing Used in MPV17-Related mtDNA Maintenance Defect

Gene 1MethodProportion of Probands with Pathogenic Variants 2 Detectable by Method
MPV17Sequence analysis 394/98 (96%) 4, 5
Gene-targeted deletion/duplication analysis 64/98 (4%) 4
1.

See Table A. Genes and Databases for chromosome locus and protein.

2.

See Molecular Genetics for information on allelic variants detected in this gene.

3.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Pathogenic variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

4.

El-Hattab et al [2018]

5.

Affected individuals of Navajo descent are commonly homozygotes for the p.Arg50Gln pathogenic variant [Karadimas et al 2006].

6.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

Clinical Characteristics

Clinical Description

MPV17-related mtDNA maintenance defect has been reported in 100 individuals [Karadimas et al 2006, Spinazzola et al 2006, Wong et al 2007, Navarro-Sastre et al 2008, Spinazzola et al 2008, Kaji et al 2009, Parini et al 2009, El-Hattab et al 2010, Al-Jasmi et al 2011, AlSaman et al 2012, Blakely et al 2012, Garone et al 2012, Merkle et al 2012, Nogueira et al 2012, Al-Hussaini et al 2014, Bijarnia-Mahay et al 2014, Mendelsohn et al 2014, Piekutowska-Abramczuk et al 2014, Sarkhy et al 2014, Uusimaa et al 2014, Vilarinho et al 2014, Choi et al 2015, Bitting & Hanson 2016, Kim et al 2016, McKiernan et al 2016, El-Hattab et al 2018].

The vast majority of affected individuals (96/100) presented with an early-onset encephalohepatopathic (hepatocerebral) disease affecting mainly the nervous system and liver; mtDNA depletion is typically identified, particularly in liver. A later-onset neuromyopathic disease characterized by myopathy and neuropathy and associated with multiple mtDNA deletions in muscles has also rarely been described (4/100 affected individuals) [El-Hattab et al 2018].

MPV17-related mtDNA maintenance defect, encephalohepatopathy form is typically an early-onset disease that presents during the neonatal period (36 out of 96; 38%) or infancy (56 out of 96; 58%). Childhood onset (2-18 years) has been reported on rare occasions (4 out of 96; 4%) [El-Hattab et al 2018].

Clinical manifestations include hepatic and neurologic findings summarized in Table 2.

Table 2.

Clinical Manifestations of MPV17-Related Encephalohepatopathy

Clinical ManifestationsFrequency
HepaticLiver dysfunction 196/96 (100%)
Liver failure 287/96 (91%)
Cholestasis70/96 (73%)
Hepatomegaly60/96 (63%)
Steatosis49/96 (51%)
Liver cirrhosis20/96 (21%)
Hepatocellular cancer 33/96 (3%)
Neurologic 4Developmental delay 575/91 (82%)
Hypotonia67/91 (74%)
Microcephaly21/91 (23%)
Peripheral neuropathy 617/91 (19%)
Seizures9/91 (10%)
Dystonia4/91 (4%)
Ataxia3/91 (3%)
Abnormalities
on brain MRI
White matter 727/71 (38%)
Brain stem signal6/71 (8%)
Basal ganglia signal6/71 (8%)
GastrointestinalFailure to thrive 882/91 (90%)
Gastrointestinal dysmotility 930/91 (33%)
Feeding difficulties28/91 (31%)
MetabolicLactic acidosis 1072/91 (79%)
Hypoglycemia 1155/91 (60%)
OtherRenal tubulopathy9/91 (10%)
Nephrocalcinosis7/91 (8%)
Hypoparathyroidism4/91 (4%)
Retinopathy7/91 (8%)
Nystagmus6/91 (7%)
Corneal anesthesia & ulcers4/91 (4%)
1.

Liver dysfunction typically presents as elevated transaminases, jaundice, hyperbilirubinemia, and coagulopathy.

2.

Liver disease progresses to liver failure typically during infancy and early childhood.

3.

Identified between ages seven and 11 years [Karadimas et al 2006, El-Hattab et al 2010, Vilarinho et al 2014]

4.

The neurologic manifestations can be overlooked or underestimated in children with early onset of severe hepatic involvement.

5.

Some affected individuals present with psychomotor delays during early infancy, while others have normal development early in life followed by loss of motor and cognitive abilities later in infancy or early childhood.

6.

Peripheral neuropathy typically manifests in early childhood with muscle weakness and wasting, decreased reflexes, and loss of sensation in the hands and feet.

7.

Diffuse white matter abnormalities may resemble leukodystrophy or hypomyelination.

8.

Some children have normal growth, especially early in the course of the disease.

9.

May present as gastroesophageal reflux, recurrent vomiting, and/or diarrhea.

10.

Lactic acidosis is a biochemical finding with mild to moderate elevation of lactate (3-9 mmol/L).

11.

Hypoglycemia typically presents during the first six months of life and can be associated with lethargy, apnea, and/or seizures.

Prognosis. MPV17-related encephalohepatopathy typically has a poor prognosis due to early liver failure. Liver transplantation has been performed in some affected individuals, with high rates of post-transplantation death.

Table 3.

Outcome of Children with MPV17-Related Encephalohepatopathy

Liver Transplant?OutcomeFrequency
Yes (17/96; 18%)Death 110/17 (59%)
Survival7/17 (41%)
No (79/96; 82%)Death from liver failure 265/79 (82%)
Survival 314/79 (18%)
1.

Death most commonly occurred in the post-transplantation period due to sepsis, respiratory failure, or multiorgan failure.

2.

The majority died during infancy (52/65; 80%); some died during early childhood (1-5 years) (10/65; 15%), adolescence (2/65; 3%), or early adulthood (1/65; 2%).

3.

The oldest reported affected individual is 25 years old [El-Hattab et al 2018]. Note: This does NOT mean that survival past 25 years is not possible.

MPV17-related mtDNA maintenance defect, neuromyopathy form is a rare emerging phenotype described in four out of 100 (4%) affected individuals. Onset of symptoms is typically later and characterized by myopathy and neuropathy.

  • One individual presented during childhood, two during adolescence, and one during adulthood.
  • All four individuals had myopathy and peripheral neuropathy.
  • Liver manifestations were absent in two individuals, while the other two had milder liver involvement but without liver failure.
  • Development was normal in all affected individuals.
  • One individual had ptosis and ophthalmoplegia.
  • Mitochondrial DNA was assessed in muscle tissue in two individuals and showed normal mtDNA content with multiple mtDNA deletions [Blakely et al 2012, Garone et al 2012, Choi et al 2015].

Genotype-Phenotype Correlations

No clear genotype-phenotype correlation exists. However, a trend for longer survival can be observed in individuals with biallelic pathogenic missense variants compared to individuals with biallelic null (nonsense, frameshift, deletions, and splice site) variants or individuals compound heterozygous for missense and null variants. In particular, individuals homozygous for p.Arg50Gln, p.Pro98Leu, or p.Arg41Gln may carry a relatively better prognosis [El-Hattab et al 2018].

Nomenclature

Navajo neurohepatopathy (NNH) was originally described as a distinct condition among Navajo children in the southwestern United States, but it is now clear that NNH is part of the MPV17-related mtDNA maintenance defect spectrum, falling under the encephalohepatopathy phenotype.

Encephalohepatopathic MPV17-related mtDNA maintenance defect may also be referred to as infantile hepatocerebral mtDNA depletion syndrome.

Prevalence

The prevalence of MPV17-related mtDNA maintenance defect is unknown but likely to be very low; only 100 affected individuals have been reported to date.

Differential Diagnosis

Encephalohepatopathic form of MPV17-related mtDNA maintenance defect needs to be differentiated from other mtDNA maintenance defects that present with encephalohepatopathy (summarized in Table 4a). (See Mitochondrial DNA Maintenance Defects Overview.)

Table 4a.

Mitochondrial DNA Maintenance Defects Presenting with Encephalohepatopathy

GeneDisorder /
Phenotype
MOImtDNA Maintenance DefectUsual Age
of Onset
Common Clinical Manifestations
MPV17Subject of this GeneReviewARDepletionNeonatal
period or
infancy
  • DD
  • Hypotonia
  • Liver dysfunction/failure
  • FTT
  • Lactic acidosis
DGUOKDeoxyguanosine kinase deficiencyARDepletionNeonatal
period
  • DD
  • Hypotonia
  • Nystagmus
  • Liver dysfunction/failure
  • Lactic acidosis
POLGAlpers-Huttenlocher syndromeARDepletionEarly
childhood
  • DD
  • Psychomotor regression
  • Epilepsy
  • Liver dysfunction/failure
  • Hearing impairment
TFAMEncephalohepatopathy
(OMIM 617156)
ARDepletionNeonatal
period
  • IUGR
  • Hypoglycemia
  • Liver dysfunction/failure
TWNKEncephalohepatopathy
(OMIM 271245)
ARDepletionNeonatal
period or
infancy
  • DD
  • Hypotonia
  • Liver dysfunction/failure
  • Lactic acidosis

AR = autosomal recessive; DD = developmental delay; FTT = failure to thrive; IUGR = intrauterine growth restriction; MOI = mode of inheritance

In addition, pathogenic variants in BCS1L (encoding a mitochondrial protein involved in complex III assembly) and SCO1 (encoding a mitochondrial protein involved in complex IV assembly) have been associated with encephalopathy and hepatic dysfunction (OMIM 124000, 220110).

Infantile liver failure is also a feature of the disorders caused by pathogenic variants in TRMU (encoding mitochondria tRNA-specific 2-thiouridylase 1) and GFM1 (encoding mitochondrial elongation factor G); mtDNA depletion is not a feature in these disorders (OMIM 613070, 609060).

Neuromyopathic form of MPV17-related mtDNA maintenance defect needs to be differentiated from other mtDNA maintenance defects that present with myopathy (summarized in Table 4b). (See Mitochondrial DNA Maintenance Defects Overview.)

Table 4b.

Mitochondrial DNA Maintenance Defects Presenting with Myopathy

GeneDisorderMOImtDNA Maintenance DefectUsual Age of OnsetCommon Clinical Manifestations
in Addition to Muscle Weakness
AGKSengers syndrome
(OMIM 212350)
ARDepletionNeonatal period
  • Hypotonia
  • HCM
  • Cataracts
DGUOKDeoxyguanosine kinase deficiencyARMultiple
deletions
Early or mid-adulthood
  • Ptosis
  • Ophthalmoplegia
DNA2Myopathy
(OMIM 615156)
ADMultiple deletionsChildhood or early adulthood
  • Ptosis
  • Ophthalmoplegia
MGME1Myopathy
(OMIM 615084)
ARDepletion & multiple deletionsChildhood or early adulthood
  • Ptosis
  • Ophthalmoplegia
POLG2Myopathy
(See POLG-Related Disorders)
ADMultiple deletionsInfancy to adulthood
  • Ptosis
  • Ophthalmoplegia
SLC25A4Cardiomyopathy
(OMIM 615418)
AR