Dystrophinopathies

Watchlist
Retrieved
2021-01-18
Source
Trials
Genes
Drugs

Summary

Clinical characteristics.

The dystrophinopathies cover a spectrum of X-linked muscle disease ranging from mild to severe that includes Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy (DCM). The mild end of the spectrum includes the phenotypes of asymptomatic increase in serum concentration of creatine phosphokinase (CK) and muscle cramps with myoglobinuria. The severe end of the spectrum includes progressive muscle diseases that are classified as Duchenne/Becker muscular dystrophy when skeletal muscle is primarily affected and as DMD-associated dilated cardiomyopathy (DCM) when the heart is primarily affected.

Duchenne muscular dystrophy (DMD) usually presents in early childhood with delayed motor milestones including delays in walking independently and standing up from a supine position. Proximal weakness causes a waddling gait and difficulty climbing stairs, running, jumping, and standing up from a squatting position. DMD is rapidly progressive, with affected children being wheelchair dependent by age 12 years. Cardiomyopathy occurs in almost all individuals with DMD after age 18 years. Few survive beyond the third decade, with respiratory complications and progressive cardiomyopathy being common causes of death.

Becker muscular dystrophy (BMD) is characterized by later-onset skeletal muscle weakness. With improved diagnostic techniques, it has been recognized that the mild end of the spectrum includes men with onset of symptoms after age 30 years who remain ambulatory even into their 60s. Despite the milder skeletal muscle involvement, heart failure from DCM is a common cause of morbidity and the most common cause of death in BMD. Mean age of death is in the mid-40s.

DMD-associated DCM is characterized by left ventricular dilation and congestive heart failure. Females heterozygous for a DMD pathogenic variant are at increased risk for DCM.

Diagnosis/testing.

The diagnosis of a dystrophinopathy is established in a proband with the characteristic clinical findings and elevated CK concentration and/or by identification of a hemizygous pathogenic variant in DMD on molecular genetic testing in a male and of a heterozygous pathogenic variant in DMD on molecular genetic testing in a female. Females may present with a classic dystrophinopathy or may be asymptomatic carriers.

Management.

Treatment of manifestations: ACE inhibitors are used with or without beta blockers for cardiomyopathy in both DMD and BMD phenotypes. Congestive heart failure is treated with diuretics and oxygen as needed; cardiac transplantation is offered to persons with severe dilated cardiomyopathy and BMD with limited or no clinical evidence of skeletal muscle disease. Scoliosis is treated with bracing and surgery. Corticosteroid therapy improves muscle strength and function for individuals with DMD between ages five and 15 years; the same treatment is used in BMD, although the efficacy is less clear.

Prevention of secondary complications: Evaluation by a pulmonologist and cardiologist before surgeries; pneumococcal and influenza immunizations annually; nutrition assessment; physical therapy to promote mobility and prevent contractures; sunshine and a balanced diet rich in vitamin D and calcium to improve bone density and reduce the risk of fractures; weight control to avoid obesity.

Surveillance: For males with DMD or BMD: annual or biannual evaluation by a cardiologist beginning at the time of diagnosis; monitoring for scoliosis; baseline pulmonary function testing before wheelchair dependence; frequent evaluations by a pediatric pulmonologist. For heterozygous females: cardiac evaluation at least once after the teenage years.

Agents/circumstances to avoid: Botulinum toxin injections; succinylcholine and inhalational anesthetics because of susceptibility to malignant hyperthermia or malignant hyperthermia-like reactions.

Evaluation of relatives at risk: Early identification of heterozygous females who are at increased risk for cardiomyopathy and, thus, need routine cardiac surveillance and prompt treatment.

Genetic counseling.

The dystrophinopathies are inherited in an X-linked manner. The risk to the sibs of a proband depends on the genetic status of the mother. Heterozygous females have a 50% chance of transmitting the DMD pathogenic variant in each pregnancy. Sons who inherit the pathogenic variant will be affected; daughters who inherit the pathogenic variant are heterozygous and may have a range of clinical manifestations. Males with DMD usually do not reproduce. Males with BMD or DMD-associated DCM may reproduce: all of their daughters are heterozygotes; none of their sons inherit their father's DMD pathogenic variant. Carrier testing for at-risk females and prenatal testing or preimplantation genetic diagnosis for pregnancies at increased risk are possible if the DMD pathogenic variant in the family is known.

Diagnosis

The dystrophinopathies cover a spectrum of X-linked muscle disease that ranges from mild to severe and includes Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy (DCM).

Suggestive Findings

A dystrophinopathy should be suspected in an individual with the following clinical and laboratory test findings that support the diagnosis of Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), or DMD-associated dilated cardiomyopathy (DCM) – especially when they occur in addition to a positive family history compatible with X-linked inheritance. Findings are most commonly noted in males, but females may also be affected.

Clinical Findings

Duchenne muscular dystrophy (DMD)

  • Progressive symmetric muscle weakness (proximal > distal) often with calf hypertrophy
  • Symptoms present before age five years
  • Wheelchair dependency before age 13 years

Becker muscular dystrophy (BMD)

  • Progressive symmetric muscle weakness (proximal > distal) often with calf hypertrophy; weakness of quadriceps femoris in some cases the only sign
  • Activity-induced cramping (present in some individuals)
  • Flexion contractures of the elbows (if present, late in the course)
  • Wheelchair dependency (after age 16 years); although some individuals remain ambulatory into their 30s and in rare cases into their 40s and beyond
  • Preservation of neck flexor muscle strength (differentiates BMD from DMD)

Note: The presence of fasciculations or loss of sensory modalities excludes a suspected diagnosis of a dystrophinopathy. Individuals with an intermediate phenotype (outliers) have symptoms of intermediate severity and become wheelchair dependent between ages 13 and 16 years.

DMD-associated dilated cardiomyopathy (DCM)

  • Dilated cardiomyopathy (DCM) with congestive heart failure, with males typically presenting between ages 20 and 40 years and females presenting later in life
  • Usually no clinical evidence of skeletal muscle disease; may be classified as "subclinical" BMD
  • Rapid progression to death in several years in males and slower progression over a decade or more in females [Beggs 1997]

See also Dilated Cardiomyopathy Overview.

Laboratory Testing

Serum creatine phosphokinase (CK) concentration (Table 1)

Table 1.

Serum Creatine Phosphokinase (CK) Concentration in the Dystrophinopathies

Phenotype% of Affected IndividualsSerum CK Concentration
MalesDMD100% 1>10x normal
BMD100% 1>5x normal
DMD-associated DCMMost individuals 2"Increased"
Female carriersDMD~50% 3, 42-10x normal
BMD~30% 3, 42-10x normal
1.

Serum CK concentration gradually decreases with advancing age as a result of the progressive elimination of dystrophic muscle fibers that are the source of the elevated serum CK concentration [Hoffman et al 1988, Zatz et al 1991].

2.

Serum CK concentrations are usually increased, but normal concentrations have been reported in DMD-associated DCM [Mestroni et al 1999].

3.

Hoogerwaard et al [1999b]

4.

Other investigations have confirmed a wide variability in serum CK concentration among DMD/BMD carriers with the mean serum CK concentration significantly higher in carriers age <20 years than in those age >20 years [Sumita et al 1998].

Establishing the Diagnosis

Male proband. The diagnosis of a dystrophinopathy is established in a male proband with the characteristic clinical findings and elevated CK concentration and/or by identification of a hemizygous pathogenic variant in DMD on molecular genetic testing (see Table 1).

Female proband. The diagnosis of a dystrophinopathy is usually established in a female proband with characteristic clinical findings and elevated CK concentration and/or by identification of a heterozygous pathogenic variant in DMD on molecular genetic testing (see Table 1).

Females may present with a classic dystrophinopathy or may be asymptomatic carriers.

  • Females with a classic dystrophinopathy. The genetic mechanisms that can explain this rare occurrence (and testing to identify the cause) include the following:
    • A deletion involving Xp21.2 (microarray [CMA] studies)
    • An X-chromosome rearrangement involving Xp21.2 or complete absence of an X chromosome (i.e., Turner syndrome) (cytogenetic studies)
    • Uniparental disomy (UPD) of the X chromosome (UPD studies)
    • Compound heterozygosity for two DMD pathogenic variants [Soltanzadeh et al 2010] (deletion/duplication analysis and/or sequence analysis)
    • Nonrandom X-chromosome inactivation (XCI). See Genotype-Phenotype Correlations.
  • Carrier testing for at-risk female relatives. Note: Carriers are heterozygotes for this X-linked disorder and may later develop clinical findings related to the disorder (see Clinical Characteristics and Management, Evaluation of Relatives at Risk for testing recommendations).

Molecular genetic testing approaches can include single-gene testing, use of a multigene panel, and more comprehensive genomic testing:

  • Single-gene testing. Because the majority of pathogenic variants involve deletions of one or more exons, gene-targeted deletion/duplication analysis of DMD is performed first and followed by sequence analysis if no pathogenic variant is found.
  • A multigene panel that includes DMD and other genes of interest (see Differential Diagnosis) may be considered. Note: (1) The genes included in the panel and the diagnostic sensitivity of the testing used for each gene vary by laboratory and are likely to change over time. (2) Some multigene panels may include genes not associated with the condition discussed in this GeneReview; thus, clinicians need to determine which multigene panel is most likely to identify the genetic cause of the condition at the most reasonable cost while limiting identification of variants of uncertain significance and pathogenic variants in genes that do not explain the underlying phenotype. (3) In some laboratories, panel options may include a custom laboratory-designed panel and/or custom phenotype-focused exome analysis that includes genes specified by the clinician. (4) Methods used in a panel may include sequence analysis, deletion/duplication analysis, and/or other non-sequencing-based tests.
    For an introduction to multigene panels click here. More detailed information for clinicians ordering genetic tests can be found here.
    Note: (1) A multigene panel may be most appropriate for individuals with less severe clinical presentations. Men with the BMD phenotype and most women may not have findings clinically distinct enough to suggest single-gene testing of DMD as the initial test. (2) Chromosomal microarray analysis (CMA) may:
    • Be appropriate if not already performed, to identify multiple gene deletions/duplications (including DMD);
    • Be considered first in an individual presenting with additional medical concerns associated with known X-linked disorders such as retinitis pigmentosa, chronic granulomatous disease, and McLeod red cell phenotype (see McLeod neuroacanthocytosis syndrome) [Francke et al 1985] or glycerol kinase deficiency and adrenal hypoplasia [Darras & Francke 1988] to suggest a contiguous gene disorder;
    • Detect an unexpected or incidental DMD deletion/duplication in an asymptomatic individual.
  • More comprehensive genomic testing (when available) including exome sequencing and genome sequencing may be considered, particularly if the presentation is atypical. Such testing may provide or suggest a diagnosis not previously considered (e.g., mutation of a different gene or genes that results in a similar clinical presentation).
    For an introduction to comprehensive genomic testing click here. More detailed information for clinicians ordering genomic testing can be found here.
    Exome array (when clinically available) may be considered if exome sequencing is nondiagnostic given the frequency of DMD deletions or duplications associated with dystrophinopathy.

Table 2.

Molecular Genetic Testing Used in Dystrophinopathies

Gene 1Test MethodProportion of Probands with a Pathogenic Variant 2 Detectable by This Method
DMDSequence analysis 3, 420%-35%
Gene-targeted deletion/duplication analysis 5, 665%-80%
1.

See Table A. Genes and Databases for chromosome locus and protein.

2.

See Molecular Genetics for information on allelic variants detected in this gene.

3.

Sequence analysis detects variants that are benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic. Pathogenic variants may include small intragenic deletions/insertions and missense, nonsense, and splice site variants; typically, exon or whole-gene deletions/duplications are not detected. For issues to consider in interpretation of sequence analysis results, click here.

4.

Lack of amplification by PCR prior to sequence analysis can suggest a putative (multi)exon or whole-gene deletion on the X chromosome in affected males; confirmation requires additional testing by gene-targeted deletion/duplication analysis.

5.

Gene-targeted deletion/duplication analysis detects intragenic deletions or duplications. Methods used may include: quantitative PCR, long-range PCR, multiplex ligation-dependent probe amplification (MLPA), and a gene-targeted microarray designed to detect single-exon deletions or duplications.

6.

Chromosomal microarray analysis (CMA) may detect DMD deletions or duplications either as part of a contiguous gene deletion syndrome or as an incidental or unexpected intragenic finding. Given that the sensitivity of CMA is not sufficient to detect all exon-level DMD deletions and duplications, CMA is not recommended as a primary assay for dystrophinopathies.

Note: If no DMD pathogenic variant is identified, skeletal muscle biopsy of individuals with suspected DMD or BMD is warranted for western blot and immunohistochemistry studies of dystrophin. Skeletal muscle biopsy continues to be used only rarely in the diagnosis of dystrophinopathies.

  • Muscle histology early in the disease shows nonspecific dystrophic changes, including variation in fiber size, foci of necrosis and regeneration, hyalinization, increased internal nuclei, fiber splitting, inflammatory changes, and, later in the disease, deposition of fat and connective tissue.
  • Western blot and immunohistochemistry are summarized in Table 3.

Table 3.

Findings in the Dystrophin Protein from Skeletal Muscle Biopsy

PhenotypeWestern BlotImmunohistochemistry 3
Dystrophin Mol Wt 1Dystrophin Quantity 2
MalesDMDUndetectable0%-5%Complete or almost complete absence
IntermediateNormal/
abnormal
5%-20%
BMDNormal20%-50%Normal appearing or reduced intensity ± patchy staining
Abnormal20%-100%
Heterozygous
Females
DMD random XCI 4Normal/
abnormal
>60% 5, 6 (70%±9%)Normal or minor changes or mosaic pattern;
dystrophin-negative fibers (9%±2%) 5
DMD skewed XCI 7Normal/
abnormal
<30% on average (29%±25%) 5Mosaic pattern;
dystrophin-negative fibers (44%±33%) 5

Mol Wt = molecular weight; XCI = X-chromosome inactivation

1.

Normal molecular mass is 427 kb.

2.

The quantity of dystrophin is expressed in percent of control values. The reference ranges shown in this table are the ones currently used by clinical laboratories and reflect approximate and reconciled data from the literature.

3.

Uses monoclonal antibodies to the C terminus, N terminus, and rod domain of dystrophin [Hoffman et al 1988]

4.

Asymptomatic to mild disability

5.

Pegoraro et al [1995]

6.

Quantitative analysis of dystrophin in female carriers is not useful in clinical practice because of the wide range of values and the significant overlap with normal values.

7.

Mild, intermediate, severe symptoms. Carriers with mild disease were young (age 5-10 years) [Pegoraro et al 1995].

Clinical Characteristics

Clinical Description

Males

The dystrophinopathies cover a spectrum of muscle disease that ranges from mild to severe. The mild end of the spectrum includes the phenotypes of asymptomatic increase in serum concentration of CK and muscle cramps with myoglobinuria. The severe end of the spectrum includes progressive muscle diseases that are classified as Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) when skeletal muscle is primarily affected and as DMD-associated dilated cardiomyopathy (DCM) when the heart is primarily affected [Beggs 1997, Cox & Kunkel 1997, Muntoni et al 2003].

DMD vs BMD vs DMD-associated DCM. The distinction between DMD and BMD is based on the age of wheelchair dependency: before age 13 years in DMD and after age 16 years in BMD. An intermediate group of individuals who become wheelchair bound between ages 13 and 16 years is also recognized. Additionally, some investigators have extended the mild end of the BMD spectrum to include individuals with elevated serum CK concentration and abnormal dystrophin on muscle biopsy, but with "subclinical" skeletal muscle involvement [Melacini et al 1996]. When these individuals with atypical disease develop severe cardiomyopathy, it is not possible to distinguish between BMD and DMD-associated DCM [Cox & Kunkel 1997].

Cardiac involvement is usually asymptomatic in the early stages of the disease, although sinus tachycardia and various ECG abnormalities may be noted. Echocardiography is normal or shows only regional abnormalities. Pericardial effusion with cardiac tamponade and myocardial inflammation precipitating heart failure has been described in people with DMD [Lin et al 2009, Mavrogeni et al 2010]. Subclinical or clinical cardiac involvement is present in approximately 90% of individuals with DMD or BMD; however, cardiac involvement is the cause of death in only 20% of individuals with DMD and 50% of those with BMD [Hermans et al 2010].

DMD-associated DCM generally presents with congestive heart failure secondary to an increase in ventricular size and impairment of ventricular function. In males, DCM is rapidly progressive with onset in teenage years, leading to death from heart failure within one to two years after the diagnosis [Finsterer & Stollberger 2003]. Individuals with DCM may or may not have clinical evidence of skeletal muscle disease [Neri et al 2007].

DMD

Motor development. DMD usually presents in early childhood with delayed motor milestones, including delays in walking independently and standing up from the floor. The mean age of walking is approximately 18 months (range 12-24 months). The first symptoms of DMD as identified by parents are typically: general motor delays (42%); gait problems including persistent toe-walking and flat-footedness (30%); delay in walking (20%); learning difficulties (5%); and speech problems (3%). The mean age of diagnosis of boys with DMD without a family history of DMD is approximately four years ten months (range: 16 months - 8 years) [Bushby 1999, Zalaudek et al 1999]. A recent study reported a mean age of 41 months at diagnosis of DMD [D'Amico et al 2017]. Proximal weakness causes a waddling gait and difficulty climbing stairs, running, jumping, and standing up from a squatting position [Li et al 2012, Liang et al 2018]. Boys use the Gower maneuver to rise from a supine position, using the arms to supplement weak pelvic girdle muscles. The calf muscles are hypertrophic and firm to palpation. Occasionally there is calf pain. DMD is rapidly progressive, with affected children being wheelchair bound by age 12 years [Darras et al 2015].

Cardiomyopathy. Among children with DMD, the incidence of cardiomyopathy increases steadily in the teenage years, with approximately one third of individuals being affected by age 14 years, one half by age 18 years, and all individuals after age 18 years [Nigro et al 1990].

Cognitive abilities. Some degree of non-progressive cognitive impairment in boys with DMD has long been known. This was initially described as a general "leftward shift" in the spectrum of IQ scores of a population with DMD compared to the population at large. Earlier reports had suggested that verbal IQ was more affected than performance IQ on the Wechsler Intelligence Scales.

A retrospective study by Banihani et al [2015] demonstrated that in their sample, 27% of the boys had IQ <70, with 19% overall fulfilling all criteria for intellectual disability (ID). A learning disability was present in 44%, attention-deficit hyperactivity disorder (ADHD) in 32%, autism spectrum disorder (ASD) in 15%, and anxiety in 27%. No significant correlation was seen between these neuropsychiatric conditions and dystrophin isoforms.

Ricotti et al [2016] accessed 130 males with DMD from four European centers and reviewed IQ assessment and a screening questionnaire. Of the original 130, 87 then underwent more extensive testing. Comparable rates of ID, ASD, ADHD, learning disability, and anxiety were observed.

These retrospective studies thus suggest increased rates of ID, ASD, ADHD, and learning disability in boys with DMD compared to the population at large.

Battini et al [2018] engaged in a prospective assessment of 40 boys with DMD. Their work showed that in boys without frank ID, executive functions such as multitasking, problem solving, inhibition, and working memory were affected out of proportion to overall cognitive function. They suggested that DMD was therefore associated with deficits in "executive function" in boys who did not demonstrate ID.

This confirms the retrospective work of Wicksell et al [2004], who demonstrated that boys with DMD who did not have ID showed deficits in active working memory in both verbal and visuospatial domains. It also confirms the retrospective study of Hinton et al [2001], who demonstrated short-term verbal memory issues in boys with DMD who did not have ID.

All of these studies thus suggest that the earlier allegation of poorer verbal function in boys with DMD and without ID was better explained by deficits in executive function, which could also lead to visuospatial difficulties in certain settings.

Mobility. DMD is associated with reduced mobility. Thus, boys with DMD have decreased bone density and are at increased risk for fractures. Corticosteroids further increase the risk of vertebral compression fractures, many of which are asymptomatic.

Life span. Despite improvement of survival, few affected individuals survive beyond the third decade [Passamano et al 2012]. Respiratory complications and progressive cardiomyopathy are common causes of death. A study of individuals with molecularly confirmed diagnoses has determined a median survival of 24 years, with ventilated patients reaching a median survival of 27 years [Rall & Grimm 2012]. In a cohort of affected individuals having both spinal surgery and nocturnal ventilation, the median survival was 30 years [Eagle et al 2007]. Because death frequently occurs outside the hospital setting, the cause of death is often difficult to determine [Parker et al 2005].

BMD

Motor development. BMD is characterized by later-onset skeletal muscle weakness. With improved diagnostic techniques, it has been recognized that the mild end of the spectrum includes men with onset of symptoms after age 30 years who remain ambulatory even into their 60s [Yazaki et al 1999].

Mildly affected individuals with confirmatory DMD molecular genetic studies and/or dystrophin studies on muscle biopsy have been classified as having either of the following [Melacini et al 1996]:

  • BMD with "subclinical" skeletal muscle involvement in the presence of elevated serum CK concentration, calf hypertrophy, muscle cramps, myalgia, and exertional myoglobinuria
  • "Benign" skeletal muscle involvement when "subclinical" findings are accompanied by muscle weakness in the pelvic girdle and/or shoulder girdle

Cardiomyopathy. While skeletal muscle involvement is milder in BMD, heart failure from DCM is a common cause of morbidity and the most common cause of death [Cox & Kunkel 1997]. Mean age at cardiomyopathy diagnosis is 14.6 years, similar to that in DMD (14.4 years) [Connuck et al 2008]. Heart transplantation rate in BMD is high within five years after the diagnosis of cardiomyopathy [Connuck et al 2008, Kamdar & Garry 2016]. Mean age of death is in the mid-40s [Bushby 1999].

Cognitive abilities. Cognitive impairment is not as common or as severe in BMD as in DMD.

DMD-associated DCM

In 1987, a five-generation, 63-member family with DCM but no evidence of skeletal myopathy was reported. Males present in their teens and twenties; the disease course is rapidly progressive and associated ventricular arrhythmias are common. Heterozygous females develop mild dilated cardiomyopathy in the fourth or fifth decade, with slow progression. The only biochemical abnormality is elevation in serum CK concentration. Towbin et al [1993] demonstrated linkage to the dystrophin locus in this family and one other.

Subsequent study demonstrated that in individuals with the most severe cardiac phenotype the cardiac muscle is usually unable to produce functional dystrophin in the heart, while in skeletal muscle reduced levels of virtually normal dystrophin transcript and protein are present [Ferlini et al 1999, Neri et al 2007, Neri et al 2012]; see Molecular Genetics.

DMD-associated DCM may be the presenting finding in individuals with BMD who have little or no clinical evidence of skeletal muscle disease. Some investigators classify such individuals as having subclinical or benign BMD, whereas others may classify such individuals as having DCM with increased serum CK concentration [Towbin 1998]. In one study of 28 individuals with subclinical and benign BMD between ages six and 48 years, 19 (68%) had myocardial involvement, although only two were symptomatic [Melacini et al 1996]. In another study of 21 individuals ranging from age three to 63 years (mean age 40 years), 33% had cardiac failure despite relatively mild skeletal muscle findings [Saito et al 1996].

DMD is a relatively infrequent cause of DCM. In a cohort of 99 Japanese unrelated adult males and females with familial and sporadic DCM, DMD pathogenic variants were identified in only three males [Shimizu et al 2005].

Females

In some instances females can have classic DMD (see Establishing the Diagnosis).

Signs and symptoms of DMD and BMD were studied among confirmed heterozygous females [Hoogerwaard et al 1999a, Hoogerwaard et al 1999b] (Table 4). In contrast, Nolan et al [2003] found no cardiac abnormalities in 23 proven heterozygotes age 6.2 to 15.9 years (see Penetrance). The prevalence of cardiomyopathy depends on its definition and can vary from 3% to 33% [Mccaffrey et al 2017]. No correlation of phenotype (DMD vs BMD), age, CK level, or muscle symptoms was noted. In another study, however, DCM was more common in functionally symptomatic heterozygous females [Schade van Westrum et al 2011].

Table 4.

Signs and Symptoms in Females Heterozygous for a DMD Pathogenic Variant

Signs/SymptomsIn Families with DMDIn Families with BMD
None76%81%
Muscle weakness 119%14%
Myalgia/cramps5%5%
Left-ventricle dilation19%16%
Dilated cardiomyopathy8%0

From Hoogerwaard et al [1999b]

1.

Mild to moderate weakness

Genotype-Phenotype Correlations

If a pathogenic variant is identified, the diagnosis of a dystrophinopathy is established, but the distinction between DMD and BMD can be difficult in some cases. For example, deletion of exons 3-7, the most extensively investigated deletion associated with both phenotypes, has been found in males with DMD and also with BMD [Aartsma-Rus et al 2006].

Reading frame rule. This "rule" states that pathogenic variants that do not alter the reading frame (in-frame deletions/duplications) generally correlate with the milder BMD phenotype, whereas those that alter the reading frame (out-of-frame) generally correlate with the more severe DMD phenotype [Monaco et al 1988]. Therefore, the type of deletion/duplication can distinguish between the DMD and BMD phenotypes with 91%-92% accuracy in young children who represent simplex cases (i.e., a single occurrence in a family) [Aartsma-Rus et al 2006], and in many cases a muscle biopsy is not needed to address the issue of BMD vs DMD.

Although exceptions to the "reading frame rule" have been documented to occur at a rate below 10% [Aartsma-Rus et al 2006], more recent studies suggest that this may only hold true for the DMD phenotype, and that the rate of exception may be higher with the BMD phenotype for both deletions and duplications [Kesari et al 2008, Takeshima et al 2010]. Correlation of clinical features with molecular test results is thus very important.

In males with DMD and BMD, phenotypes are best correlated with the degree of expression of dystrophin, which is largely determined by the reading frame of the spliced message obtained from the deleted allele [Monaco et al 1988, Koenig et al 1989].

  • DMD. Very large deletions may lead to absence of dystrophin expression. Pathogenic variants that disrupt the reading frame include stop variants, some splicing variants, and deletions or duplications. They produce a severely truncated dystrophin protein molecule that is degraded, leading to the more severe DMD phenotype. Exceptions to this "reading frame rule": deletions in protein-binding domains that may severely affect function even when in-frame [Hoffman et al 1991]; and exon-skipping events in which apparently out-of-frame deletions behave as in-frame deletions or vice versa [Chelly et al 1990]. The accuracy of phenotype prediction using this rule is in the range of 91%-92% [Aartsma-Rus et al 2006]. More recent studies suggest that duplications, which occur more commonly in BMD, may result in exceptions to the reading frame rule in a higher proportion of cases, perhaps up to 30% [Kesari et al 2008, Takeshima et al 2010]. Correlation of clinical features with molecular test results is thus very important.
    Wingeier et al [2011] showed that there was no clear relationship between pathogenic variants seen in males with DMD and specific aspects of cognitive function, or overall performance on standard measures of cognitive abilities. They did note, however, that the lack of the dystrophin isoform Dp140 was associated with greater impairments overall; this observation confirms the findings of a previous study that suggested that dystrophin deletions involving the brain distal isoform Dp140 are associated with intellectual impairment [Felisari et al 2000]. Mild intellectual disability is significantly more common in males with pathogenic variants affecting Dp140; also, most males with pathogenic variants involving the Dp71 isoform are cognitively disabled [Daoud et al 2009, Taylor et al 2010]. Recent work from the French Neuromuscular Network suggests that pathogenic variants in the distal parts of the dystrophin gene are more likely to be associated with cognitive impairment [Mercier et al 2013].
    Dp71 and Dp140 are the shorter isoforms of dystrophin and are highly expressed in fetal brain with gradual increase from the embryonic stage to adult. Dp71 is very abundant in the hippocampus and some layers of the cerebral cortex with sublocalization in synaptic membranes, microsomes, synaptic vesicles, and mitochondria. The location of the pathogenic variant appears to correlate with full-scale IQ (FSIQ) values (e.g., pathogenic variants affecting the Dp140 isoform 5' UTR affect FSIQ less than those affecting the Dp140 promoter or coding region) [Taylor et al 2010]. Further, the cumulative loss of isoforms expressed in the central nervous system increases the risk of cognitive deficit [Taylor