-
Mixed Connective Tissue Disease
Wikipedia
In some studies these patients become reclassified over time with other diseases, such as rheumatoid arthritis in 9%, SLE in 15%, and scleroderma in 21% of cases. [27] Such progression is, in part, determined genetically, thus SLE is more likely in patients with HLA-DR3 and scleroderma in patients with HLA-DR5. [24] Epidemiology [ edit ] The prevalence of MCTD is higher than that of dermatomyositis and lower than that of SLE. [28] In a 2011 Norwegian study, the prevalence of MCTD was 3.8 per 100,000 adults, with an incidence of 2.1 per million per year. [29] MCTD is much more frequent in women than in men at between a 3:1 to 16:1 ratio, and in women younger than 50. [10] The general age at onset is around 15–25 years old. [ citation needed ] See also [ edit ] Autoimmunity Overlap syndrome Rheumatoid arthritis Autoimmune disease Scleroderma Systemic lupus erythematosus Polymyositis Rheumatology References [ edit ] ^ a b Rapini RP, Bolognia JL, Jorizzo JL (2007).RNPC3, LSM2, HLA-DRB1, SNRNP70, HLA-DRB4, RBM45, TRBV20OR9-2, FSCN1, SNRPA, HNRNPDL, RO60, TRB, TNF, SFTPD, TNFRSF1A, CDR3, PIK3R3, CD40LG, CDK2AP2, SUB1, PTBP1, BTG3, RPP14, POLG2, LAMTOR2, SF3B6, ENAH, NT5C1A, IL17F, H3P44, S100A9, PON1, PSMD12, HNRNPAB, COL17A1, CRP, DSG3, ERG, F8, FOS, CBLIF, HLA-DOA, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB3, HNRNPC, CDKN2A, IFNA1, IFNA13, IL2RA, IL6, IL10, IL12B, IL17A, IRF7, MPP1, MUC1, NCAM1, P4HB, H3P8
-
Glycogen Storage Disease Type Iv
Gene_reviews
Of 42 affected individuals, 37 had at least one identifiable variant detected by sequencing analysis; 28 individuals had biallelic pathogenic variants, and six had one identifiable pathogenic variant, implying that the second causative variant was not identified. 6.
-
Liver Disease
Wikipedia
Acetaldehyde and free radicals generated by metabolizing alcohol induce DNA damage and oxidative stress. [27] [28] [29] In addition, activation of neutrophils in alcoholic liver disease contributes to the pathogenesis of hepatocellular damage by releasing reactive oxygen species (which can damage DNA). [30] The level of oxidative stress and acetaldehyde-induced DNA adducts due to alcohol consumption does not appear sufficient to cause increased mutagenesis. [30] However, as reviewed by Nishida et al., [24] alcohol exposure, causing oxidative DNA damage (which is repairable), can result in epigenetic alterations at the sites of DNA repair.ABCB4, SERPINA1, AFP, GPT, TNF, GGT1, NR1H4, ATP7B, NPC1, CCL2, MMP9, HMOX1, NOS2, NFKB1, CCR2, MTHFR, SCO1, CSF3, HSPA1A, SORT1, SRSF5, TIMP3, NQO1, CRISPLD2, ALPL, HPGDS, COL3A1, CYP7B1, SC5D, IL1RAP, LTB4R, ENO3, MRPS23, TYROBP, CD86, TXN, CD3D, RNASE6, CCK, SOD1, IL1R2, DDAH1, TM4SF4, ACTA2, SOCS1, IL11, HK3, TREM1, IL9R, BCL2L1, INS, GNG8, GABRR2, CD79B, AHR, JUP, ALAD, CYP2E1, GRK5, NRP1, RAC1, TGM1, ALOX5AP, SOCS3, AMACR, ASAH2, ITGB6, SULT1E1, SERPINE1, CCR1, ST8SIA1, CYP1A2, LAT, FAS, TRMU, DPYD, MDM2, HLA-DOA, DNAJA2, FASLG, ARG1, TM6SF2, IFNA1, GOLM1, ALB, IL10, MIR122, PNPLA3, KRT18, SPP1, NFE2L2, HLA-DRB1, IL18, HAMP, FBL, ABCB11, IL6, IFNL3, HFE, IFNA13, TGFB1, SLC17A5, IL17A, UGT1A1, TP53, IFNG, HGF, TLR4, ADIPOQ, GGTLC4P, ATP8B1, GGTLC5P, GGT2, GGTLC3, FECH, GABPA, APOE, IL33, CXCL10, IL1B, PPIG, F2, KRT8, ALDH2, LOC102724197, GGTLC1, LEP, REN, RBM45, LGALS3BP, CCL4, CYP2B6, GCG, STAT4, FAH, IL22, PPARA, CFTR, ADH1C, CD14, MBL2, CDKN2A, ABCD1, XPR1, NLRP3, TIMP1, GPBAR1, HAVCR2, ADH1B, CXCL12, GOLPH3, CYP2C19, CHI3L1, TLR3, IGF1, CCR5, BCL2, TERT, CTNNB1, PTEN, CCN2, FGF21, VIPR1, ABCC2, IL2, IGFBP1, IL1RN, IL4, APLN, TNFRSF1B, CXCL8, TLR2, CP, IGF2, SIRT1, CD1D, CD40, EXT1, IL1A, MMRN1, IL37, IFNA2, GFER, AKT1, LIPA, ACTB, AKR1B10, IL21, PTGS2, GSTP1, PRKCSH, VDR, MTTP, GNMT, NAT10, GDF2, HLA-DQA1, ATHS, H3P10, VWF, VTN, MBOAT7, ANGPT1, SLPI, PDCD1, AKR1A1, MIR34A, HADHA, CCL27, ADAMTS13, ACE2, CX3CL1, PIK3CA, ALPP, PIK3CG, NOS3, PIK3CD, ASRGL1, PIK3CB, PF4, TNFRSF11B, VEGFA, LTA, MIR223, CYP3A4, THPO, CEACAM5, DGUOK, SERPINA3, FGF19, ACE, CYP7A1, PDLIM3, STAT3, CYP2D6, SMAD3, MAPK1, CST3, LGALS3, MAPK14, CR1, NR1I2, DDC, ESR1, PON1, SST, TMBIM4, ATRNL1, IL23A, PPARG, LBP, PTPN1, LCN2, POLDIP2, FST, RETN, POSTN, CD274, MPI, RDX, HLA-DPB1, RNF19A, PSG2, SLCO1B1, HLA-DRB3, LMNA, ABCB6, KRAS, PAEP, HNF4A, KDR, MGMT, LARS1, PRKAB1, TNFRSF12A, CXCL9, ATP6AP2, RIPK3, SLC25A13, COX2, RBP4, UGT1A7, PGF, HP, GDF15, PTPN2, MMP2, PKHD1, DEPDC5, SLC5A2, AHSA1, CCL5, REXO1L1P, CTLA4, RIPK1, HNF1B, STS, TAP2, CYP1A1, TAP1, CYP2A6, CYP2C9, TNFSF10, IL23R, TXNRD1, TAC1, DECR1, DLAT, APOC3, TFEB, DNASE1, DPP4, APOA1, MICOS13, UBE2B, EGF, MIR200A, ENG, HIF1A, PCSK9, UCP2, CRP, MIR192, TM7SF2, CASP1, TNFAIP6, CASP3, CD19, MIR146A, OPN1SW, BCHE, CDKN1A, MIR221, ATP6AP1, CEBPA, THBS1, CEACAM3, CEACAM7, CLU, TNFSF11, CCR6, HSD17B6, AIMP2, TERC, SERPINC1, BTBD8, CRK, SRY, ST2, MICA, GNAS, ERN1, MSC, ADH1A, GHR, SHBG, GPC3, PSC, IFNL4, CD163, GLI2, GLO1, MTCO2P12, GAPDH, SDC1, CXCL2, LOC110806263, ERVK-6, GSTM1, CXCL16, CXCL11, GRAP2, CCL21, CCL20, ABCG2, DCLK1, BPI, YY1, ANXA2, ANXA1, SOD2, FABP4, AGRP, LCS1, SMPD1, FLT1, F10, CXCR4, ARTN, WNT3A, ALDH1B1, COL18A1, ALDH1A1, AGT, F3, APEX1, FAT1, KMT2D, ST8SIA4, ABCC4, SLC7A5, ARHGEF5, PEMT, CPQ, C1orf61, TRIM22, TFPI2, XRCC1, PAK4, MERTK, CNBP, TFG, XRCC4, WARS2, ABCC3, SLC25A15, TAM, MGAM, SELENBP1, RAPGEF5, TM4SF5, PPP6R2, MRPL28, ISG15, AIP, RGN, PRDX6, HGS, APOBEC3B, IL32, H6PD, S1PR2, CCL4L2, CXCL14, CIR1, TBPL1, SLC9A3R1, FHL5, WASF1, TIMELESS, SQSTM1, IL18BP, KDM5D, WASF2, NR0B2, SOAT2, IKBKG, LGR5, NAMPT, KHSRP, LRPPRC, NR1H3, ARHGEF7, AOC3, BECN1, TNFSF13, NR1I3, TNFRSF10B, SLC23A1, GGH, SLC23A2, MFN2, NAT2, UGT1A6, IVNS1ABP, NLRP6, BHLHE23, CMPK2, REG3G, SLCO6A1, KLF14, TMEM199, IFNLR1, DDX53, BMPER, IMMP1L, EHMT1, MLKL, SPDYA, COPD, IFNL1, MIR7-3HG, STPG4, ATP11C, CELIAC2, HSD17B13, CLNK, CTHRC1, C1QTNF1, CYGB, CPEB4, PDCD1LG2, HM13, TRAPPC9, NBPF3, CCDC115, IL1F10, GPT2, PPP1R15B, KRT90P, TRIM5, GFM1, TSLP, DPP9, TMEM67, DNER, MUC16, SFXN1, IL17F, ACTBL2, ARSH, GSTK1, MIR25, MIR29A, MIR93, POTEKP, MIR338, MIR451A, DELYQ11, POTEM, MSMP, KRT8P3, ZGLP1, SYCE1L, MIR1224, LINC01672, KLRC4-KLRK1, MIR4717, ERVK-20, TP53COR1, ERVK-32, H3P9, MIR27A, MIR224, LRRC37A3, MIR22, ZNF699, SERPINA13P, CCL4L1, MIRLET7C, MIRLET7G, MIR101-2, MIR125A, MIR126, MIR136, MIR148A, MIR149, MIR155, MIR17, MIR18A, MIR191, MIR20A, MIR21, MIR212, MIR219A1, HSD3B7, LIN28A, IGF2BP1, SLC40A1, VPS33B, HAVCR1, NPHP3, SIGLEC7, GLS2, IL17B, ANGPTL3, SLCO1B3, NXT1, ERVW-1, MANEA, CD209, IL20, IL21R, NTM, ASCC1, SEPSECS, SBDS, DCTN4, ZDHHC2, KRT23, CHMP2B, BRD1, NUP62, KHDRBS1, CXCR6, TNFSF13B, FGL2, SUB1, CIT, PSIP1, RASSF1, SEC63, MAN1B1, ACOT7, NID2, KLRK1, PEG10, STAB1, GANAB, RPGRIP1L, POFUT1, SMUG1, CLEC1B, TLR7, CYP39A1, SPHK2, AICDA, BIRC6, CC2D2A, KLHL1, IGDCC4, ZNF410, RBPJP4, CIDEC, NOD2, XYLT2, CARD9, HIF3A, DCLRE1C, CPEB1, CDCP1, MPPE1, AHNAK, ADIPOR2, NEIL1, UGGT1, CFC1, ISYNA1, WDR11, SIRT6, NBAS, DNAJB11, CMPK1, TLR9, ANLN, CCHCR1, UGT1A10, UGT1A8, WT1, UGT1A5, UGT1A9, UGT1A4, UGT1A3, MARCHF5, DPP8, CHDH, IMPACT, RNPC3, XBP1, PTPRO, WNT2B, FUT1, FOXC1, FOXM1, FOXO3, FLNA, FMR1, FN1, MTOR, NR5A2, FUSE, FUT2, IL6ST, G6PC, GALT, GBE1, GC, GCK, GCKR, MSTN, GEM, GH1, FGFR3, FGF7, FGF2, FANCA, DSC3, DSPP, DUSP5, EDN1, EGFR, EGR1, EHHADH, ELN, EPAS1, EPHB2, EPHX1, ERBB4, ESR2, ETV3, EZH2, F5, F8, F9, FABP3, GIP, GJB2, GCLM, HMGB3, FOXA2, FOXA3, ONECUT1, HOXD13, HRC, HSD11B1, HSPA1B, HSPA4, HSPB1, HSPG2, HTR2A, ICAM1, IFNAR2, IGF2R, IGFBP2, IGFBP3, IGFBP6, CCN1, IKBKB, HMGCS2, HMGB1, GLP1R, HMBS, CXCR3, GRB2, GRN, CXCL1, GSPT1, GSTA1, GTF2H1, GUSB, HADH, HARS1, HAS1, HAS3, SERPIND1, HCLS1, HDAC1, CFH, HGFAC, HLA-A, HLA-DRB4, ATN1, SLC26A3, DOK1, ANPEP, XIAP, BIRC5, APLP2, APOB, AQP6, ABCC6, AREG, ASS1, ATD, RERE, ATP12A, ATP4A, AVP, BAGE, BCS1L, CEACAM1, BMP2, BMP4, BMP8B, AIRE, ANGPT2, BUB1, AMBP, ACACA, ACADM, ACADVL, ACHE, ACTG1, ACTG2, ACVRL1, ADAM8, ADAM10, ADAR, ADCYAP1, PLIN2, ADH5, AFM, AGER, JAG1, AGTR1, ALAS2, AKR1B1, BRCA2, SERPING1, DMRT1, COMT, CLDN3, CPOX, CREB1, CREBBP, CRYGD, CSF2, CSF3R, SLC25A10, CTSL, CTSS, CTSZ, CUX1, CYP1B1, CYP17A1, CYP51A1, DCX, AKR1C1, DDX3X, DMBT1, COX8A, COL1A2, VPS51, CNR2, CALR, CASP2, RUNX3, CD34, CD36, CD40LG, CD68, CD151, CDA, CDC25A, CDK4, CDKN2B, CDO1, CDSN, CES1, CFL1, CHUK, CLTC, CNR1, IL2RB, IL7R, WARS1, CCL22, ROS1, S100A4, S100A9, S100B, SERPINB3, SERPINB4, SCN2A, CCL17, CCL19, SELE, IL10RB, SELP, SELENOP, SRSF4, SI, ST6GAL1, ST3GAL4, SKIV2L, SLC2A1, SLC3A2, RORA, ABCE1, RNASE1, RIT2, SEPTIN4, POLG, PPARD, PRF1, PRKAA1, PRKAA2, PRKACA, PRKCZ, MAPK3, MAPK8, MASP1, RELN, PTPN6, PTPN11, PVR, RAD51, RARRES2, RENBP, REST, SLC4A1, SLC4A2, SLC10A1, TGFBR1, TIMP2, TKT, TLE1, TLL1, TLR5, TMSB4X, TNFAIP3, TNFRSF1A, TPMT, TPO, TRPC5, TYRP1, SLC35A2, UGT1A, UGT2B7, UMOD, UROD, VCAM1, VIP, THAS, TGFB2, SOX9, TEP1, SPINK1, SPINT1, SPRR2A, SPTBN1, SRD5A2, AKR1D1, SREBF2, STAT5A, STAT5B, SULT2A1, SYK, ADAM17, TALDO1, TBX1, TCF3, TCF7L2, ZEB1, TEAD1, TMBIM6, PMM2, PLA2G5, PKM, LIG4, CYP4F3, LTBP3, BCAM, SH2D1A, LYZ, EPCAM, SMAD7, MAGEA3, MAT2A, MDM4, MAP3K5, MET, MFGE8, MIA2, ATXN3, MLH1, NR3C2, MMP1, MMP3, LTB, LGALS9, MMP10, LEPR, IL13, IL15, IMPA1, IDO1, INSR, ITGA6, IRF6, IRF7, ISG20, ITPA, ITPR3, JAK2, JUN, KCNJ5, KIR3DL1, KNG1, KIF22, LCAT, LDLR, MMP7, MMP13, PKD1, NTS, OAS1, OAS2, OGG1, OLR1, OPRM1, OSM, OTC, PAH, PAK2, PAK3, PDGFRA, PDGFRB, ENPP2, SERPINF1, PEX1, ABCB1, PHB, PHKG2, PIM1, NUP88, YBX1, MOS, SLC11A2, MPL, ABCC1, MSH3, MT1B, MTAP, MUC2, MUC4, MVK, MYC, MYD88, MYO5B, NAGA, NCAM1, NGF, NGFR, NHS, NM, NOS1, CCN3, H3P40
-
Raynaud Syndrome
Wikipedia
People with severe disease prone to ulceration or large artery thrombotic events may be prescribed aspirin. [22] Sympatholytic agents, such as the alpha-adrenergic blocker prazosin , may provide temporary relief to secondary Raynaud's phenomenon. [22] [26] Losartan can, and topical nitrates may, reduce the severity and frequency of attacks, and the phosphodiesterase inhibitors sildenafil and tadalafil may reduce their severity. [22] Angiotensin receptor blockers or ACE inhibitors may aid blood flow to the fingers, [22] and some evidence shows that angiotensin receptor blockers (often losartan ) reduce frequency and severity of attacks, [27] and possibly better than nifedipine. [28] [29] The prostaglandin iloprost is used to manage critical ischemia and pulmonary hypertension in Raynaud's phenomenon, and the endothelin receptor antagonist bosentan is used to manage severe pulmonary hypertension and prevent finger ulcers in scleroderma . [22] Statins have a protective effect on blood vessels, and SSRIs such as fluoxetine may help symptoms, but the data is weak. [22] PDE5 inhibitors are used off-label to treat severe ischemia and ulcers in fingers and toes for people with secondary Raynaud's phenomenon; as of 2016, their role more generally in Raynaud's was not clear. [30] Surgery [ edit ] In severe cases, an endoscopic thoracic sympathectomy procedure can be performed. [31] Here, the nerves that signal the blood vessels of the fingertips to constrict are surgically cut.GSTM1, GSTT1, IFNA2, GUCY1A1, IRAK1, AGXT, SLC12A3, SPP1, STAT4, ADAR, TREX1, SAMHD1, COQ2, ADA2, RNF125, IFIH1, RNASEH2B, RNASEH2A, LBR, RNASEH2C, COL4A1, C1QA, C1R, CLCNKB, CRP, TNF, RNPC3, PDE5A, EDN1, CALCA, VWF, F8, TRPM8, SLC29A3, HIF1A, VEGFA, CALCB, CDH5, CDH11, BTG3, HLA-DPB1, TRPA1, TNFRSF14, ANXA5, HMOX1, HTR1B, HLA-DRB1, ESR1, IL6, EGF, KRT10, NOS1, PTGIR, PTX3, S100A12, SAFB, CXCL6, SDHC, ACE, SPARC, GAD1, SSB, GSTM2
-
Vaginitis
Wikipedia
There is no firm evidence to suggest that eating live yogurt or taking probiotic supplements will prevent candidiasis. [24] Studies have suggested a possible clinical role for the use of standardized oral or vaginal probiotics in the treatment of bacterial vaginosis, either in addition to [26] or in place of [27] the typical antibiotic regimens. However, recent articles [28] [29] question their efficacy in preventing recurrence compared with other means, or conclude that there is insufficient evidence for or against recommending probiotics for the treatment of bacterial vaginosis.
-
Vitamin A Deficiency
Wikipedia
However, high-dose supplementation of pregnant women should be avoided because it can cause miscarriage and birth defects . [28] Food fortification is also useful for improving VAD.RBP4, PARP1, BMP4, LRAT, TGM1, CYP26A1, HAMP, VCAM1, DGAT1, IREB2, CRP, PIK3CD, PIK3CB, PIK3CA, PIK3CG, BCO2, ALDH1A2, XPR1, ABCB11, IKBKG, ADAM10, FOXP3, SLC40A1, RDH11, BCO1, CHD7, CYBRD1, ABCC11, STRA8, TYR, S100A8, TFRC, ABCC8, APP, TNFRSF17, BDNF, CD14, G6PD, HSD11B1, IL1B, LYZ, FOXO4, NDUFA2, PVALB, RARA, RXRA, ADCYAP1, SCD, SOX9, ST13, MIR363
-
Benign Tumor
Wikipedia
However, undifferentiated benign tumors and differentiated malignant tumors can occur. [26] [27] Although benign tumors generally grow slowly, cases of fast-growing benign tumors have also been documented. [28] Some malignant tumors are mostly non-metastatic such as in the case of basal cell carcinoma . [4] CT and chest radiography can be a useful diagnostic exam in visualizing a benign tumor and differentiating it from a malignant tumor.HMGA2, CDKN2A, VEGFA, MYC, AKR1B10, TOP1, SST, MSLN, PTGS2, BRCA1, ERCC1, ABCB1, FASN, LCN2, NQO1, GLP1R, CSF1R, PDIA3, GSTT1, HSF1, TERT, SRF, ID1, SOD2, SLC5A5, SKP2, KRAS, IL1B, IL2, E2F1, PPARA, PLAUR, KDM6A, NOS3, EPHA2, IL18, KCNH2, LTF, NAT1, ATF2, VDR, PLEKHS1, ATM, SNORD50A, DNAJC10, WDR74, BIRC6, LIN28A, NACC1, ENOX2, AHR, APOBEC3A, LIN28B, MIR129-2, SNORD50B, OCLN, ARHGAP45, GPX3, CAT, YY1, APOBEC3B, GPR55, TNFRSF10A, CAPN1, CITED2, GSTO1, TRPV1, DLC1, ASIP, TP53, TSC2, NF2, NME1, BRAF, MUC16, EGFR, CCND1, ERBB2, COX8A, IGF2, PTEN, SMARCB1, IGF1, MDM2, TSC1, SMUG1, H3P10, ESR2, FOLH1, RET, MGMT, CTSB, MIB1, HSP90AA1, HNF1A, NF1, TAS2R38, F9, SSX2, PTCH1, HP, CYP19A1, IL6, CXCL8, MMP13, DAPK1, MMP9, KRT20, CEACAM5, TOP2A, COPS5, CDKN2B, PLAG1, PAX8, SERPINE1, GH1, CCDC6, ADAM12, RASSF1, SSX2B, CTNNB1, MIR21, EGF, MTOR, HMGA1, MIR106B, NPY, STIP1, SEMA4F, DICER1, HPSE, SEMA4D, VSIG4, BCL2, BSG, TUBB3, BTG1, BTG3, AKR1A1, CCNG1, FLOT1, SIRT1, PDLIM7, ABI1, KLK4, PCAP, SCG2, REEP5, TFPI2, NCOA4, FGF23, CUL1, RGS5, CBX4, AKR7A2, RIPK1, ADAM9, TNFRSF6B, TNFRSF11A, CDKN1C, KAT2B, SOCS3, CLDN1, USP6, P2RX6, KIF1A, CDH1, NTN1, CD68, GDF15, NPEPPS, BAG3, BCAR1, CD44, BAK1, CD274, TRIM29, MIR17, AKT1, HT, RAB40A, CNTN4, ZNF367, AFP, THSD7A, RAB40AL, ADH6, C17orf97, LINC01194, MIR10B, ADH4, MIR15A, MIR187, CLIC4, MIR200A, MIR211, MIR23B, MIR17HG, MIR372, MIR373, MIR375, NME1-NME2, ADH1C, SYCE1L, CD24, ADH1B, TMX2-CTNND1, MTCO2P12, HTRA3, AKR1B1, TBRG1, ING5, AQP6, DKK2, RPS6KA6, RABGEF1, HTRA2, IGHV1-12, PSAT1, STOML2, LEF1, IGF2-AS, GDE1, MED15, AQP5, AQP1, SYTL2, BCOR, ANO1, FBXW7, KLK15, KLK3, BIRC5, KLHL1, CPAT1, ELAC2, GAS5, SOX17, RHBDF2, APC, ANXA2, PRDM2, FOSB, WNT5A, CENPF, EXT2, ILK, INSRR, MECOM, KDR, KIT, ETV4, KRT19, ETS1, LGALS3BP, LMNA, LMX1A, LPP, LTBP2, MCAM, ESR1, MEN1, MET, MELTF, MIF, MKI67, MLH1, MMP7, MMP14, COX2, ERG, NDUFAB1, EPHB3, NFE2L2, IL17A, IL16, EZH2, HIF1A, FUS, GABPA, KAT2A, GFAP, GLI1, GLI2, FOS, CXCR3, FN1, FOXM1, HDAC1, HDC, HGF, HLA-DRB1, F3, HOXA7, HOXD8, HPR, HPT, HPV18I2, HRAS, FGFR2, TNC, ICAM1, FBLN1, FAP, IGFBP2, IGFBP3, EIF4E, NME2, NOS1, TGFB1, DNMT3A, SLC2A1, DDIT3, DCN, SNAI1, SOX1, SPP1, SRD5A2, CTSL, SS18, STAT3, TCF7, TG, THBD, SRSF3, TIMP1, TIMP2, CTNND1, TPO, CSE1L, CLDN4, TSHR, TTR, ABCC2, CCR7, CCR5, VIM, VIPR1, SGTA, SFRP1, NOTCH3, PPP2R1B, NRAS, TNFRSF11B, PAX1, PAX3, PCNA, PDGFRB, SERPINF1, EDNRB, PLAU, EDNRA, PLXNA2, POMC, EDN1, ADH1A, SEMG2, PROS1, LPAR1, PTH, DUSP6, PTPRC, RAD51B, RAP1GAP, S100A4, S100A6, S100A12, CCL2, CCL18, SEMA3F, PRKCD
-
Medulloblastoma
Wikipedia
Despite intensive treatment, only four of 66 patients were still alive 5 years after a relapse. [28] A US study involved 161 patients between the ages of three and 21 with a high-risk profile .PTCH1, SMO, EWSR1, PMS2, HES1, HEY1, PON1, NOTCH2, IFNG, CD99, TP53, FLI1, MYC, MYCN, CCK, FLII, MGMT, CHGA, CDKN2A, NGFR, EGFR, SMARCB1, IGF1, ABCB1, CDK4, SCG2, ZIC1, RHOV, PIK3CG, PIK3CD, PIK3CB, STK11, PIK3CA, SMS, ENO2, NPY, PDGFRA, BCOR, VIM, VHL, CHP1, CTNNB1, TBC1D9, NGF, SGSM3, SYP, GFAP, TCF3, SSTR2, SST, TIMP1, ABO, SSR2, SSR1, SRC, SPARC, SOX10, SNAI2, SLC6A2, SHH, SFRP1, S100A4, REN, PVT1, PTGS2, TNFRSF1B, ZBTB16, TPM3, UCHL1, AMACR, SIGLEC7, HPGDS, BHLHE22, DNAJC15, NOSIP, NT5C3A, PINX1, MARCKSL1, STK33, WLS, CD276, PHF5A, SLCO6A1, ADGRF3, GSTK1, HOTAIR, DICER1, CHEK2, RASSF1, BTRC, UGCG, VEGFA, VIP, XRCC5, SMARCA5, KHSRP, ABCC3, CLDN10, PSIP1, CLDN6, INA, DCLK1, HDAC9, HDAC5, TUBB3, NDRG1, PTEN, NTRK1, MAP2K1, E2F1, CDK9, CDKN2C, CHGB, COL1A2, CUX1, DCC, DMBT1, EEF1B2P2, POMC, ELK3, EPHB1, ERG, F3, FGFR4, FOXO1, FLT3, CDK6, CDK2, CDH2, CD38, ALB, ANXA2, APC, ASCL1, ASMT, ASPH, ATRX, CCND1, BCL2, BDNF, BRCA2, BRS3, CAPS, CASP3, CD6, FLT3LG, MTOR, GCGR, STMN1, MAP2, MCF2, MDK, MELTF, MNAT1, MRC1, ABCC1, NEUROD2, NEUROG1, NF1, ABR, OPRK1, PAWR, PCSK2, SERPINF1, LIF, KRT19, GH1, KRAS, GIPR, GCLC, GRM1, HCLS1, HCRT, NRG1, HMMR, TLX1, HRAS, IGF1R, IL1B, IL2RB, INSM1, KDR, KIT, H3C9P
-
Hereditary Gingival Fibromatosis
Wikipedia
Leblebicioglu, “Hereditary gingival fibromatosis—a review,” Compendium of Continuing Education in Dentistry, vol. 28, no. 3, pp. 138–143, 2007. View at Scopus ^ a b c R.SOS1, GINGF2, REST, HGF, TGFB1, MET, IL6, TIMP1, SERPINH1, FN1, VEGFA, IL1B, HPSE, MMP1, EGFR, MMP2, CCN2, CAV1, TGFBR2, TGFB3, THAS, TGFB2, TIMP2, SMN2, SMN1, SHH, TNF, TP53, ACTB, SOCS1, SLC52A2, LINC02605, COMETT, GINGF3, MIR335, MIR93, NRK, PWAR1, ASH1L, NR1I2, SLC25A37, UNC50, PAK4, ENAM, SEMA3E, CD163, MAPK8, MSC, PIK3CA, MAPK1, HBG1, GPT, FGF1, F2R, EZH2, EPHB2, MARK2, EGF, CTNNB1, CDKN2A, CDK9, CDK2, BMP7, BMP2, ASCL1, XIAP, HAS3, HBG2, PIK3R1, HPN, PIK3CG, PIK3CD, PIK3CB, ALB, PCNA, NGF, MMP9, KISS1, IL13, CXCL8, IL7, IGF1, IFNG, ICAM1, HES1, H3P10
- Pain Management During Childbirth Wikipedia
-
Tree Nut Allergy
Wikipedia
Neither the identification of the source of a specific ingredient in a parenthetical statement nor the use of statements to alert for the presence of specific ingredients, like "Contains: milk", are mandatory according to FSIS. [25] [26] FALCPA also does not apply to food prepared in restaurants. [27] [28] The EU Food Information for Consumers Regulation 1169/2011 – requires food businesses to provide allergy information on food sold unpackaged, for example, in catering outlets, deli counters, bakeries and sandwich bars. [29] In the United States, there is no federal mandate to address the presence of allergens in drug products.
-
Toxic Shock Syndrome
Wikipedia
The sole exception was Rely, for which the risk for TSS was still higher when corrected for its absorbency. [25] The ability of carboxymethylcellulose to filter the S. aureus toxin that causes TSS may account for the increased risk associated with Rely. [18] Notable cases [ edit ] Clive Barker , fully recovered, contracted the syndrome after visiting the dentist. [26] Lana Coc-Kroft , fully recovered, contracted the syndrome due to group A streptococcal infection . [27] Jim Henson , d. 1990, contracted the syndrome due to group A streptococcal infection and subsequently died from it. [28] [29] Nan C. Robertson , d. 2009, the 1983 winner of the Pulitzer Prize for Feature Writing for her medically detailed account of her struggle with toxic shock syndrome, a cover story for The New York Times Magazine which at that time became the most widely syndicated article in Times history. [30] Mike Von Erich , d. 1987, developed the syndrome after shoulder surgery: he made an apparent recovery but suffered brain damage and weight loss as a result of the condition; he died by suicide later. [31] References [ edit ] ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Low, DE (July 2013).TNF, NOS2, GC, AQP1, C5AR1, HLA-DRA, TBXA2R, SELL, ADM, MIF, MC2R, HMOX1, A2M, CCKBR, ENO2, ELANE, TST, SETBP1, SEA, SLC9A6, IL10, IL17A, TRBV20OR9-2, MYD88, CXCL8, RAB7B, RAB7A, PCSK9, VEGFA, MYOM2, GSTO1, TREM1, GSTO2, CCL28, AGR2, SUMF2, TRBV28, TRBV3-1, MAVS, IL23A, RAB1B, OXA1L, TLR2, HLA-A, ALB, CASR, CD40, EDNRB, EPHB2, FN1, FUT2, HSPG2, SYN1, IFNG, IL1B, IL6, LAMA2, MAPK1, SAG, CCL20, TST1
-
Posterior Ischemic Optic Neuropathy
Wikipedia
Progress in Retinal and Eye Research . 28 (1): 34–62. doi : 10.1016/j.preteyeres.2008.11.002 .
-
Neurodevelopmental Disorder
Wikipedia
The most common nutritional cause of neural tube defects is folic acid deficiency in the mother, a B vitamin usually found in fruits, vegetables, whole grains, and milk products. [26] [27] (Neural tube defects are also caused by medications and other environmental causes, many of which interfere with folate metabolism, thus they are considered to have multifactorial causes.) [28] [29] Another deficiency, iodine deficiency , produces a spectrum of neurodevelopmental disorders ranging from mild emotional disturbance to severe mental retardation.TANC2, TBR1, CDKL5, MECP2, STXBP1, SCN2A, CHD2, PTEN, FOXG1, FOXP1, TCF4, GRIN2B, MEF2C, POGZ, SYNGAP1, SCN1A, EEF1A2, SCN8A, DHX30, DDX3X, GABRB3, ZNF292, ARID1B, TRIO, GABRB2, KCNQ2, DLG4, CTNNB1, DYRK1A, MYT1L, ANKRD11, CASK, WDFY3, KCNH1, TCF7L2, BRSK2, HNRNPU, PPM1D, GNAO1, TRIP12, NEXMIF, SETD5, KMT2E, ASH1L, DOCK8, HIVEP3, ALG13, GIGYF2, ASXL3, PAK1, SNAP25, KMT2C, PURA, PHF2, PLXNB1, PAX5, PPP2R5D, CACNA2D3, PTK7, PTPN11, KMT2A, SETD2, LMX1B, WAC, ITPR1, ILF2, SLC6A1, KMT5B, SPAST, KATNAL2, TBL1XR1, RIMS1, CDC42BPB, MED13L, PARD3B, TNRC6B, IQSEC2, SMC3, ADNP, DLGAP1, DNM1, CUL3, WDR45, SETBP1, SMC1A, SRCAP, NCKAP1, SRGAP3, DSCAM, ANK2, CERT1, ADCY5, ZC3H4, EBF3, NRXN1, NKX2-1, CNTNAP2, UBE3A, BRPF1, SHANK3, FMR1, SMARCA1, MBD5, ARSD, MTOR, PRKN, BDNF, PTCHD1, EHMT1, CBLL2, BANF1, ARX, MUL1, FOXP2, GPHN, PVALB, ANK3, CTCF, USP9X, KCNB1, MCPH1, CNTN6, CSNK2A1, L1CAM, AUTS2, DTNBP1, CACNA1C, ARHGEF2, RBFOX1, RELN, GRIN2A, MAGEL2, SATB2, MET, DISC1, ACTL6B, KDM5C, USP7, KDM5B, SNRPN, HUWE1, PHF8, HNF1B, PRS, NRG3, AHDC1, KAT6A, PSMD12, CNTN5, SETD1A, SOX5, SMARCA4, SMARCA2, SOX11, SLC6A3, HERC2, SLC2A1, TRIM32, SHANK2, SLC1A4, TSC2, GREM1, CYFIP2, VEGFA, TLK2, RPL10, BCL11A, ZBTB20, NSUN2, DEAF1, DHPS, SLC2A4RG, WDR62, GRM5, NPAS4, GATAD2B, ZMIZ1, HTR7, HTT, GNB1, MIR137, ATP1A3, ASTN1, HTC2, BCL11B, STRADA, HES1, HECW2, DPP6, KIRREL3, CSNK2B, EIF5A, ELN, CNTN4, NTNG2, DLG2, BPTF, GRM7, CACNA1A, KDM6B, KANK1, TPH2, H4-16, PIK3AP1, FBXW7, ZNF804A, TANC1, RHOBTB2, ARHGEF9, ASTN2, ADGRL3, WWC1, DMXL2, CAPS2, CUX2, NEDD4L, TNPO3, SH2B1, UPF2, NFASC, MICU2, NAXE, WASH6P, ALDH1L1, CCDC88C, MIR379, BDNF-AS, RAI1, H4C15, SNORD116@, MACROD2, PTLS, WASHC1, GNB5, PTCHD1-AS, CXCR6, SLU7, PDE10A, MDD1, MIR219A1, PNKP, DLGAP4, ZNF507, AGMO, NTNG1, TRAK1, LRRTM1, RAB40AL, KCTD13, PHACTR1, SCAMP5, RLS1, VPS13B, RBFOX3, PHF6, NAA15, IMMP2L, CPA6, UGT1A1, ACKR3, NLGN3, RARS2, PCBP4, WWOX, TBC1D24, DPYSL5, FZR1, SLC12A5, SHROOM4, PRR12, KIDINS220, NLGN4X, ANKS1B, FMN2, KLF16, AHI1, ULK4, MEG3, KIF21A, UHRF1BP1, CC2D1A, NDE1, ATG7, GTPBP2, FBLIM1, PPP1R9A, AMBRA1, CHD7, PAG1, MEPCE, PHF21A, PCDH19, SEPSECS, GTDC1, TSPYL2, NPAS3, UPF3B, SECISBP2, MSANTD2, ELP4, PHGDH, HACE1, INTS1, FAM124B, DARS2, FBXO11, NDEL1, APH1B, PRUNE1, EPG5, LRRC4C, ZSWIM6, SRPX2, HPGDS, DLL1, GIT1, CHD8, UNC79, NLGN2, LRRC7, TAOK1, EJM2, EXOSC3, NUFIP2, ATL1, AAVS1, H4C2, ZBTB18, YAP1, GSTP1, GRM2, GRIK2, GRIA4, GRIA2, GPR42, GNAI2, GFAP, GDI1, GABRG3, GABRG2, GABRA1, GAST, FRAXE, FRAXA, FGF2, EZH2, ESR2, ERBB4, ENPEP, EN2, EIF4G1, EIF4EBP2, GUK1, H2AZ1, HCFC1, KIF5C, NCAM2, MTRR, MTR, MRC1, MEF2A, MAPT, MAB21L1, LIMK1, LAMB1, AFF3, KCNQ3, NRG1, KCNMA1, KCNA2, INSR, IL10, IL6, ICAM1, HPRT1, HNRNPH2, HMGN1, UBE2K, EIF4E, EIF4A1, EFNB2, ATP7A, CAPN1, CALR, CALCR, CALB2, CACNA1E, CACNA1D, DAGLA, BRS3, BRAF, AVP, ASNS, CD38, STS, ARNTL, APP, APOE, NUDT2, ADRA2B, ADRA1A, ADCYAP1R1, ADCYAP1, ADAM10, SERPINH1, CDH2, EEF1D, DARS1, EEF1B2, EDNRA, DUSP2, DPH1, DOCK3, DMD, DIO3, DIAPH1, DDX6, BRINP1, CYP2C9, CDH13, CYP2C19, CX3CR1, CTLA4, CRP, CREBBP, KLF6, COL9A3, CHRNA7, CHRNA4, CHD4, NDP, NFIC, CNOT3, H4C5, HDAC3, CCNK, RAB11A, EIF3A, PSMG1, CNTNAP1, SMARCA5, GNPAT, H4C14, H4C13, ACTB, AP1S2, H4C8, H4C3, H4C11, H4C12, H4C6, H4C4, H4C1, FZD9, H4C9, KMT2D, EIF2B2, SNURF, ZNF142, GTF2IRD1, CPQ, RACK1, WARS2, FEM1B, DGCR2, MED13, TLK1, SETDB1, ZEB2, TMEM94, GABBR2, PHOX2B, ATG5, CDYL, NRXN2, NRXN3, LHX2, TAOK2, AP4M1, LPAR2, TOP3B, MBD2, AIMP2, ZNF711, NTRK1, POMC, RNF2, OPN1LW, RARS1, RAC3, PTPN4, PSD, PPP3CA, PTPA, PPP2CA, POU3F3, PLK1, RORB, PIK3CG, PIK3CD, PIK3CB, PIK3CA, PIK3C3, PC, PAFAH1B1, OXTR, ODC1, NR4A2, ROBO1, RYR2, ZFX, SYT1, VIP, VDR, VARS1, NR1H2, SLC35A2, TSC1, HSP90B2P, TLR3, TFE3, TAF1, SYP, SCN3A, VAMP2, SSTR4, SRY, SOX4, SOX3, SNCA, SMARCC2, SMARCB1, SLC6A8, ST3GAL3, ERICD
-
Parkinson Disease 8, Autosomal Dominant
Omim
Saunders-Pullman et al. (2011) examined olfaction in 31 individuals with G2019S-related PD, 30 with non-LRRK2 PD, 28 nonmanifesting G2019S carriers, and 46 controls.
-
Gingivitis
Wikipedia
Journal of Periodontology . 78 (7): 1218–28. doi : 10.1902/jop.2007.060269 . PMID 17608576 . ^ WebMD Treatments for Gum Disease External links [ edit ] Classification D ICD - 10 : K05.0 - K05.1 ICD - 9-CM : 523.0 - 523.1 MeSH : D005891 DiseasesDB : 34517 SNOMED CT : 66383009 External resources MedlinePlus : 001056 eMedicine : article/763801 v t e Dentistry involving supporting structures of teeth ( Periodontology ) Anatomy Periodontium Alveolar bone Biologic width Bundle bone Cementum Free gingival margin Gingiva Gingival fibers Gingival sulcus Junctional epithelium Mucogingival junction Periodontal ligament Sulcular epithelium Stippling Disease Diagnoses Chronic periodontitis Localized aggressive periodontitis Generalized aggressive periodontitis Periodontitis as a manifestation of systemic disease Periodontosis Necrotizing periodontal diseases Abscesses of the periodontium Combined periodontic-endodontic lesions Infection A. actinomycetemcomitans Capnocytophaga sp.ELANE, ITGB2, CTSC, CYBB, TCIRG1, GFI1, B4GALT7, ALMS1, KRT6A, PLG, SRP54, SLC6A19, CYBA, STAT3, OCRL, SAMD9, COL3A1, TSC2, NCF1, LYST, TSC1, CD40LG, TNF, FERMT1, IL1B, NCF4, NCF2, CYBC1, IL6, MMP8, IL17A, MPO, TNFSF11, CRP, BOP, MMP9, IL10, PI3, IL11, IL18, HIF1A, DEFB1, IL1RN, IL1A, TGFB1, TLR4, HMGB1, AHSG, ANXA1, CSF1, NLRP3, PADI4, JMJD6, NT5C2, BMS1, PDLIM7, VEGFA, BHLHE40, PADI2, OGA, KLHDC2, CDK5R1, SMC3, VDR, ACACA, PART1, GORASP1, UPK3B, OPN1MW3, DEFB4B, OPN1MW2, DEFB103A, AMTN, IL34, CDCA5, IL17F, SHCBP1, USB1, WNK1, RETN, LRIT1, DEFB103B, NLRP2, TIMP1, CRCT1, HSPA14, FOXP3, DELEC1, TRBC1, TRBV7-9, TRBV16, APOBEC3C, SMR3A, TLR2, PTHLH, TGM2, KRT19, ITGAL, ISG20, IL13, IL12A, IL4, IL2RA, IFNG, HSPD1, HGF, GOLGB1, OPN1MW, GCHFR, FOLR1, FCN2, ESR1, ECE1, DEFB4A, CST3, CCR6, CCR4, CGA, CBS, CASP1, AHR, AGTR1, ITGAM, LPO, TRBV20OR9-2, LTA, TRB, ADAM17, SYT1, SPIB, SLC2A1, SELE, CCL3, CCL2, S100A12, S100A9, S100A2, RELA, ADAM8, PTGS2, HTRA1, PROS1, PF4, PAM, NOS2, COX2, MNAT1, MMP13, MMP1, CXCL9, LYZ, MTCO2P12
-
Acanthamoeba Keratitis
Wikipedia
However, these agents have shown limited efficacy against the cystic forms. [12] [24] Due to the efficacy of these drugs against the Acanthamoeba, as well as their low toxicity to the cornea, they are commonly used as the first line medications in the treatment of AK. [12] [21] Biguanides have also been found to act synergistically when used in combination with diamidines, with propamidine isethionate and hexamidine being the most commonly used. [25] A limitation of diamidine use is relative corneal toxicity with long term use. [12] A combined regimen of propamidine , miconazole nitrate, and neomycin has also been suggested. [26] [27] [28] Due to the potential for negative longterm visual outcomes with AK, therapy is usually started with a combination of a biguanide and a diamidine.
-
Cystinosis, Nephropathic
Omim
Of 82 alleles bearing the 65-kb deletion, 38 derived from Germany, 28 from the British Isles, and 4 from Iceland.
-
Eosinophilic Esophagitis
Wikipedia
Current Opinion in Gastroenterology . 28 (4): 382–388. doi : 10.1097/MOG.0b013e328352b5ef .TSLP, CAPN14, TRIM8, TNK2, STAT6, JAZF1, EMSY, CCL26, IL13, IFFO2, HSF2BP, LINC02588, ANKRD27, CCDC81, MEAK7, SHROOM3, KIF17, IL5, CLEC16A, DCC, TIMP2, P2RX6, LINC02240, XKR6, CAPN5, CEP295NL, TGFB1, POSTN, FLG, TNF, DSG1, IL33, CCL11, FOXP3, ATP12A, ATP4A, IL4, IL6, IL15, EPC2, SPINK7, WDR36, CLDN7, CPA3, SIGLEC8, MID1, IL18, TNFSF10, SOAT1, EPX, CLDN1, DHTKD1, RNASE2, IL9, FFAR3, ALOX15, BDNF, IL18R1, COPD, LOC283710, IL32, IL1RL1, SLC9C2, SERPINA13P, MIR223, SPAG9, NR1I2, OGDHL, DEFB103A, FST, TNFRSF14, MIR375, EMBP1, BECN1, ABCB11, DEFB4B, BANCR, EOS, CBLL2, RSAD2, TRPV1, HBS1L, DEFB103B, CRLF2, ANO1, OXR1, SLC52A1, RHOF, TLR9, BCL11A, KLF13, CPA4, MUL1, LRRC31, CHIA, ACAD8, PANK2, MAPK8IP2, FIP1L1, SYNPO, PTGDR2, SERPINB12, SPINK5, REEP5, AGA, VCAM1, GFER, ESR2, F2RL1, FGF9, FKBP4, FKBP5, GABPA, LRRC32, GJA1, DNM1, GRM5, HIF1A, ICAM1, IFNG, IL1A, IL1B, IL5RA, ESR1, DEFB4A, TYK2, CD1D, ALOX5, ANXA5, CCND1, BID, BNIP3, CALB2, CAMP, CD44, CYP2C19, CEACAM8, CLC, CCR3, CCR8, ABCC2, COL8A2, CSF2, IL9R, IL15RA, ITGAM, CCL18, KLK6, PTGDR, PTGS2, RNASE3, S100A7, SAFB, CCL2, SGSH, KCNJ2, AGXT, SPRR3, STAT1, STC1, TFDP1, TLR3, TNFRSF4, KLK7, PRG2, PTPA, PLG, LALBA, LCT, LOX, LTC4S, SMAD2, KITLG, MIF, MMP2, MMP14, MPG, MYB, NFE2L2, SLC22A18, OSM, PRKN, SLC9A3
-
Optic Atrophy 1
Omim
To analyze the influence of OPA1 gene mutations on optic nerve head morphology in patients with dominant optic atrophy, Barboni et al. (2010) studied the optic nerve head of 28 OPA1 mutation-positive patients from 11 pedigrees and 56 age-matched controls by optical coherence tomography (OCT).OPA1, DNM1L, OPA3, MFN2, MFN1, DENR, DAPK2, OMA1, FIS1, UTRN, CRMP1, SIRT3, IMMT, MFF, MED12, YME1L1, SSBP1, PRKAB1, NFE2L2, PPARGC1A, PPARG, PRKAA1, KIF1B, OPA5, PRKAA2, GSTM1, FXN, WFS1, SLC14A1, LEP, TOMM70, TOMM40, SQSTM1, YAP1, OPTN, COX5A, MRPS30, MAD2L1BP, KEAP1, PAPOLA, ACO2, TPPP, PACC1, PGAM5, CCDC50, MCU, MAP1LC3B, MUL1, PINK1, TFB2M, OPA4, SEMA6A, ADCK1, MTPAP, TREH, APTX, TMED9, ASAP1, CD274, FGF21, GABARAPL1, TUSC2, CDK5R1, PDAP1, PHB2, ASAP2, TP53BP1, BECN1, CNR2, GABPA, ERG, EPHB2, ELAVL1, DGKG, CYP1B1, CYC1, CTRL, CPOX, COX8A, CDKN1A, AKAP1, CDH1, CAV1, CAST, CAPN1, BNIP3L, BNIP3, CEACAM1, BGLAP, BCL2, AFM, GSTT1, H2AX, HRES1, HES1, VEGFA, PHLDA2, ACP3, CLDN5, SPG7, SOD1, SLC5A1, SDHA, MAPK1, PRKCA, PLXNA2, PLIN1, PKLR, REG3A, NRF1, NOS3, NFE2L1, NDUFV2, MYC, LCN2, LAMP1, OPA8